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In this paper, we are presenting an interdisciplinary project that applies deep learning 

models to classify script types and sub-types in medieval Hebrew manuscripts. It 
incorporates the techniques and databases of Hebrew paleography and (with reservations) 
Hebrew codicology. This research project is part of our ongoing effort to develop 

algorithmic tools for processing historical documents within the Visual Media Lab at the 
Department of Computer Science at Ben-Gurion University of the Negev, Israel.1 

The ongoing digitization of manuscripts' collections kept in different librarie s 
worldwide leads to the increasing availability of more and more volumes of manuscripts 
that once could have been only studied in situ. We have all reasons to believe that, within 

a few years, thousands of more manuscripts around the globe would be properly digitized 
and available online. In the case of Hebrew manuscripts, this process is already very 
advanced, with the Institute for Microfilmed Hebrew Manuscripts at the National Library 

of Israel that already hosts more than 70,000 microfilms and thousands of digital images. 
These digitized documents make more than 90% of the known Hebrew manuscripts. Thus, 

automatic processing, or at least the primary computerized categorization of manuscripts, 
has become the most urgent task of modern Hebrew paleography. 

Hebrew paleography emerged in the mid-20s century, side by side with the modern 

Latin paleography, and with the same basic principles. The theoretical basis of Hebrew 
paleography is formulated in the works of Malachi Beit-Arie,2 Norman Golb,3 Benjamin 

Richler4, Colette Sirat5, Ada Yardeni6. Contemporary Hebrew paleography identifies six 
main-types of scripts: Ashkenazi, Italian, Sephardic, Oriental, Byzantine, Yemenite. Each 
main script type may contain up to three sub-types of scripts: square, semi-square, cursive. 

In total, there are 15 Hebrew script sub-types. The paleographical classification of the 
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ground truth for our project comes from the SfarData dataset,7 which includes full 
codicological descriptions and paleographical definitions of all dated medieval Hebrew 

manuscripts until the year 1540 (this makes about 95% of the known dated medieva l 
Hebrew manuscripts). The SfarData project was initiated by Malachi Beit-Arié in the 1970s 

and it is currently hosted at the site of the National Library of Israel. 
Our project is an on-going research. Our current goal is to develop algorithms to 

recognize Hebrew scripts and their sub-types. The practical applications at this stage would 

include: 
● Determining the date and the area of writing. The paleographical classification of 

verified manuscripts enables machine learning models to learn the features common to 
each type and sub-type. The trained models can determine the sub-type of a query 

manuscript, which enables estimating the date of an undated manuscript or the place of 
copying. Thus, the application of this technology to fragmentary and faked text has the 
potential to roughly estimate where and when they were written. Today this task poses 

serious challenges and often only an experienced librarian or paleographer is capable of 
a plausible guess. There are many forged and incorrectly dated manuscripts, on the basis 

of which historical theories and histories of entire peoples are built. The use of a well-
trained algorithm will allow us to objectively resolve such issues.  

● Already at this stage, we expect the algorithm to be capable of producing a rough 

catalogue of a collection of manuscripts where no trained human paleographer is 

available. Alongside the effort of the Institute for Microfilmed Hebrew Manuscripts to 
assemble the digital images of all the known Hebrew manuscripts, there still are 
important collections that have not been digitized and properly catalogued, such as the 

big collection of Hebrew manuscripts in the Vernadsky Library in Kyiv, currently in the 
most alarming state of preservation. Even the basic catalogue made by the algorithm 

could attract to such collections the much-needed attention of the researchers.      
● Identifying important parts of a manuscript, such as colophons, owner's notes. These 

additions to a manuscript are often written in a different script sub-type. Identifying them 
allows a researcher to recognize the date, place of copying, name of the scribe, etc.   

● Tracking the movement of scribes, scholars, and communities over time through script 

and/or hand similarities. 

● When the algorithm is further trained to recognize specific words, we would apply it to 
the biggest manuscripts’ collections, such as Firkowicz collections kept in St. 

Petersburg, collections of Bibliothèque nationale de France, and others. This will allow 
us to have a closer look at some intriguing and fascinating but extremely complicated 
objects of research, when pieces of information about them are scattered in the librarie s 

around the globe. To bring just one example, we could learn more about the Jews of 
Magna Graecia, with their physical and social mobility and intricate history. The 

relevant manuscripts from different libraries’ collections can be identified, brought 
together, connected, and sorted out with the help of machine learning.  

● Another possible application at this stage includes research of little-known, challenging, 

and often mysterious marginal Jewish communities, such as Georgian, Bukharan, 

Mountain Jews, about whom little is known today and whose history remains to a great 
extent legendary. History and works of the Jews of the Kingdom of the Two Sicilies and 
the Jews of Malta (to whom belonged the famous kabbalist Abraham Abulafia) before 

the expulsion by the king of Aragon, is another example of a potential application of the 
algorithm.  
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There are several ongoing projects in the research of the Hebrew manuscripts that 
complement ours; the most important among them are the Friedberg Genizah Project with 

its Cairo Genizah site8 and the Judeo-Arabic corpus9, the eScriptorium,10 and the Haifa 
Project for Research on the Dead Sea Scrolls11. There is also a very promising project at 

the Bar-Ilan university that works on building Hebrew manuscript metadata records and is 
focused on the manuscripts dated after 1540, i.e., later than the classical Hebrew 
paleography.12 Similar efforts to train an algorithm to recognize script types and built a web 

database exist in  Latin paleography,13 with its database.14 A recent deep learning method15 
studies the impact of varying patch sizes on the performance of writer identification for 

modern handwritten documents. Their results expose that the performance depends on the 
patch size and for each dataset a different patch size gives the best performance. Arabadjis 
et al.16 classify the hands who wrote a given set of historical Byzantine Codices using 

manually designed features for matching a similarity score. 
     In our project, we built a medieval Hebrew manuscripts dataset, Visual Media Lab - 

Hebrew Paleography (VML-HP). The VML-HP dataset includes 500 pages labeled with 
15 script types. To our best knowledge, this is the first publicly available Hebrew 
paleographic dataset. Currently, the dataset can be downloaded from 

https://www.cs.bgu.ac.il/~berat/. To provide a common baseline for algorithms assessment 
and comparison, we supply the partition of the VML-HP. The dataset is split into training 

and two test sets. The first test set, the typical test set, consists of unseen pages of 
documents present in the training set. The second - blind test set - contains unseen 
manuscripts and imitates a real-life scenario. We present a case study for script type 

classification on the introduced dataset. We introduce a homogeneous style patch extraction 
method, where each patch contains a fixed number of lines. We also compare several 

established deep learning classification models and preprocessing methods. The obtained 
results show that there is a big room for improvement on the blind test set, whereas the 
typical test set is an easier problem. Currently, we are working on exploring more advanced 

deep learning architectures that can capture fine-grained features of the Hebrew 
manuscripts. The fine-grained features are the features that aim to differentiate between 

hard-to-distinguish object classes, such as subtle differences in letter forms in different 
script sub-types.  
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Method 
We propose to develop a computational tool that can recognize the script sub-type of a 
given Hebrew manuscript. Conventional recognition methods utilize handcrafted features, 

which mainly depend on careful design and expert knowledge. More advanced recognit ion 
methods are based on deep learning and can acquire effective feature representations from 

training data. Deep learning algorithms are backboned by neural networks inspired by 
human brain architecture, consisting of neurons and synapses among them. A deep learning 
algorithm is organized as a stack of layers, each of which is a collection of feature 

extractors, so-called filters (Fig.1). Raster pixel values of a document image patch are fed 
into the network and are transformed into feature maps as they pass forward through the 

layers. Each layer extracts features at a different abstraction level. Initial layers detect 
primitive features such as dots, lines, and curves. Final layers combine these features into 
complex features such as corners, circles, and letters. At the final layer, the document image 

patch is classified into one of the script sub-types. The filters are updated according to a 
measure of the difference between the target and the predicted labels. The major drawback 

of a deep learning network is the necessity of a large amount of labeled train data, for 
example, 1000 samples per class. 

 
Fig.1: Illustration of a deep learning network. It consists of stacked feature extraction 

layers. The early layers extract primitive features, and the later layers extract more complex 
features. 

 

Building the dataset 
Sfardata, the database of Hebrew paleography and codicology, completed by Malachi Beit-

Arié and his team, contains descriptions and classification of almost all known dated 
medieval Hebrew manuscripts. All the manuscripts in the database were studied in the 

libraries where they were kept, and many of them are now days available online. Malachi 
Beit-Arié and his team met with our team, discussed our project, gave us their full support, 
and allowed us to use their database in its entirety. Our team’s paleographer, who is herself 

a student of Malachi Beit-Arié, handpicked digitized pages from the manuscripts described 
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in the SfarData as the raw material for our project. When for certain script sub-types we 
had to add manuscripts not described in SfarData, our paleographer picked them in 

accordance with the classification of medieval Hebrew manuscripts as described in 
SfarData.  

Pages in the VML-HP dataset were extracted from high-quality digitized manuscripts, 
and we gave first preference to those kept in the National Library of Israel. We also used 
manuscripts from other libraries, first and foremost the British Library and the Bibliothèque 

nationale de France, with their significant collections of digitized manuscripts  availab le  
for  download.The dataset includes 500 pages total.     

 

Clean patch generation algorithm 

The VML-HP dataset contains 500 pages that represent 15 script sub-types. The ideal 
solution is to feed whole pages into the network because with larger input images, the 
network can capture more fine-grained features17.  However, the input image cannot be 

greater than the size that fits the memory requirements. Therefore, we balance this tradeoff 
by cropping image patches that contain approximately five text lines, which is a sufficient 

size for human paleographers to classify the script type. Some parts of the pages contain 
irrelevant information, such as decorations, marginal drawings, or noisy background, as 
illustrated in Fig.2. Therefore, we developed a clean patch generation algorithm 

(https://www.cs.bgu.ac.il/~berat/data/hp_dataset.zip) that generates patches containing 
pure text regions and an approximately equal number of text lines.  

To achieve this, we first calculate a square patch size for each page s×s that will include 
five lines. Then, we extract random patches of size s×s. The size of the extracted patches, 

i.e., the value of s, varies across manuscripts. Therefore, to remain consistent with our 
previous experiments, the patches are resized to 350× 350. Examples of such clean patches 

are shown in Fig. 3.  

Calculating the patch size s×s for each page is done by first, extracting 𝑘 random patches 
of the size equal to one-tenth of the page height, as a patch of this size usually includes 

several text lines. Then The number of lines in a given patch is computed by counting the 
peaks of the 𝑦 profile using Savitzky-Golay filter. Finally, the desired patch size is given 

by 𝑠 =
ℎ

10
×

𝑛

𝑚
, where ℎ is the height of the page, 𝑛 is the average targeted number of lines, 

and 𝑚 is the actual average number of lines in the 𝑘 extracted patches. We used 𝑛 = 5 and 

𝑘 = 20. 

Furthermore, each extracted patch is validated according to the following conditions: 

 The foreground area should be at least 20% of the total patch area and not exceed 

70% of the total patch area. This condition eliminates almost empty patches and 
patches with large spots, stains, or decorations. 

 The patch should contain at least 30 connected components. This condition 
eliminates patches with few foreground elements. 

 The variance of the 𝑥 and 𝑦 profiles denoted by σ𝑥  and σ𝑦, respectively, should 

satisfy the conditions σx ≤ Tx, σ𝑦 ≥ 𝑇𝑦 Assuming horizontal text lines, the 

variance of the 𝑥 profile should be relatively low. During our experiments we set 
Tx = 1500 and Ty = 500. 

 The following inequality should be satisfied: 

                                                 
17 Tan, Mingxing, and Quoc Le. "Efficientnet: Rethinking model scaling for convolutional neural 

networks." International Conference on Machine Learning. PMLR, 2019. 
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0.5 ≤
∑ 𝑃𝑥 (𝑖)

𝑣
2
𝑖=0

∑ 𝑃𝑥 (𝑖)𝑣

𝑖=
𝑣
2

≤ 1.5 

Where 𝑣 is the number of values in the 𝑥 profile and 𝑃𝑥 (𝑖) is the 𝑖-th value. This 
condition eliminates the patches with text lines that occupy only a fraction of a 

patch. 

Fig.2: Example output patches from a naive patch generation algorithm. Some patches 
contain irrelevant features, some contain only a few characters, and others do not even 
contain any text. 

Fig. 3: Example output patches from the clean patch generation algorithm. 

Results 
We experimented with several convolutional network architectures. In all the experiments, 
we train the network on the training set and test it on both test sets, the typical and the blind. 

We generated 150K patches from the training set, 10K patches from the typical test set, 
and 10K patches from the blind test set. The patches are generated using the clean patch 

extraction algorithm described in the previous section and are resized to the size of 350×350 
pixels. The generated patches are equally distributed amongst all of the script types. The 
classification results are evaluated by the patch level accuracy and the page level accuracy. 

For the page level accuracy, the label of a page is computed by taking the majority vote of 
the predictions of 15 patches from the page. 

Classifying into 15 script types 

Table 1 shows the accuracy results for classifying 15 script sub-types using different 

convolutional networks and compares the results on the typical and blind test sets at patch 
and page levels. As we can see from the results, the typical test set patches and pages are 

easier to classify. The gap in results on typical and blind test sets shows that the models are 
overfitting. The models have seen the pages from the typical test set during the training; 
however, the blind test set contains pages from unseen manuscripts. The difference in 

results shows that the models’ learned features are specific to the manuscripts and not to 
the script type, like background texture. At nearly all levels and sets, the performance of 
the ResNet50 classifier is consistently higher; however, it does not surpass 40% accuracy 

on the blind test set. The random guess accuracy of 15 classes is 7.6%, indicating that the 
network can extract some script type features and improves the random classificat ion 

accuracy. We can argue that script type classification is an expressible function, but the 
network needs more data to learn this function. 
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 Patch level Page level 

 Typical Blind Typical Blind 

DenseNet 97.97 32.95 98.63 38.36 

AlexNet 91.99 27.03 93.15 28.28 

VGG11 99.16 35.55 100 35.63 

SqueezeNet 98.03 30.38 98.63 29.45 

ResNet18 97.07 30.95 98.63 34.25 

ResNet50 99.55 36.15 98.63 39.73 

InceptionV3 94.94 26.41 95.89 26.71 

 

Table 1: Patch and page level accuracies on typical test set and blind test set using different 
network architectures for classifying 15 script sub-types. 

Classifying square and cursive script types 

Table 2 shows the accuracy results for classifying only two script types, square and cursive, 

using different convolutional networks. From a human paleographer's point of view, it is 
almost impossible to make a mistake and mix up square and cursive script (while the 
boundaries between square and semi-square, and semi-square and cursive can be blurry). 

Thus, a good result obtained by the algorithm in this case, indicates that the algorithm learns 
the correct features in the manuscript, that represent the script itself. We can note that the 

typical test set accuracy is fully saturated, whereas there is still little room for improvement 
at blind test set accuracy. This result strengthens the above argument that more samples 
should be used in the training phase; we see that decreasing the number of classes from 15 

to two (which increased the number of samples per class), leads to higher accuracy. 
 

 Patch level Page level 

 Typical Blind Typical Blind 

DenseNet 99.85 87.06 100 83.72 

AlexNet 99.48 88.01 100 91.86 

VGG11 99.93 86.45 100 88.37 

ResNet18 96.65 86.85 100 87.21 

ResNet50 99.99 90.58 100 94.19 

SqueezeNet 98.03 82.45 100 86.05 

InceptionV3 99.16 82.06 100 20.23 
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Table 2: Patch and page level accuracies on typical test set and blind test set using different 
network architectures for classifying square and cursive script sub-types. 

Discussion 
The classification accuracy of the best performing model, i.e. ResNet50, is around 35%. 
When comparing class accuracies (Fig. 4) we found that particular classes have an accuracy 

over 50%, i.e., Yemenite semi-square, Sephardic square, Sephardic semi-square, Oriental 
square, and Ashkenazi semi-square. These results indicate that a classification system 
designed only for these classes will have higher page level accuracy, since the page level 

accuracy is computed by the majority vote over the patches from the same page.  
 

Fig. 4: Patch level class accuracies on blind test set using ResNet50 network. 

 
The Byzantine square sub-type has a very low accuracy because it was confused with 

Byzantine semi-square (Fig. 5). Interestingly, this confusion is not mutual because the 

Byzantine semi-square sub-type was confused with Italian. In contrast, the confus ion 
among the Italian, Oriental, Sephardic and Yemenite semi-square sub-types are mutua l. 

The mutual confusions can be due to the paleographers’ ambiguity in the ground truth of 
semi-square types or to insufficient ground truth.   
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Fig. 5: Patch level confusion matrix on blind test set using ResNet50 network. 

Conclusions 
From the paleographic point of view, it would be beneficial to gain insight into the features 

that underlie the class decisions. We are developing a fine-grained classification model that 
can spot the regions taken into account for script type decisions. In addition, we are 
collecting and labeling more document page images, as the machine learning for a 15-class 

problem requires around 15K samples in total. Our algorithm significantly surpasses the 
random guess accuracy of 15 classes (7.6%) and this indicates that the network can extract 

some script type features. We can argue that script type classification is an expressible 
function, but the network needs more data to learn this function. When more material is 
brought for comparison and the size of the test, train, and blind sets increases, the accuracy 

of the algorithm will improve.  
 

Our work and its place in the overall theme of Jewish 

Studies in the Digital Age 
 

Our project belongs to the field of digital research of manuscripts and historical documents . 
The amount of digitally available manuscripts and documents in different libraries and 
archives is constantly growing and already the amount of material available is often more 

than an individual researcher could process manually. In all likelihood, in the foreseeable 
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future, a human researcher will formulate a problem and the processing of large amounts 
of data will be assigned to an algorithm. For this to be possible, algorithms must recognize, 

classify, and ultimately search through large amounts of unrecognized manuscripts and 
documents. The integration of computer-based techniques can now bring to the 

manuscripts’ research the often-missing quality of objectivity, possibility of objective 
verification of results. It also brings with it the possibility of solving problems that are 
beyond the physical capacities of an individual researcher. 

We use the theoretical framework of Hebrew paleography to train deep learning neural 
networks to classify Hebrew script types and sub-types and our project works side by side 

and compliments such ongoing project as eScriptorium, Friedberg Genizah Project and 
more.     
 


