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Abstract. This paper presents a public dataset, VML-HP, for Hebrew
paleography analysis. The VML-HP dataset consists of 537 document
page images with labels of 15 script sub-types. Ground truth is manu-
ally created by a Hebrew paleographer at a page level. In addition, we
propose a patch generation tool for extracting patches that contain an
approximately equal number of text lines no matter the variety of font
sizes. The VML-HP dataset contains a train set and two test sets. The
first is a typical test set, and the second is a blind test set for evaluat-
ing algorithms in a more challenging setting. We have evaluated several
deep learning classifiers on both of the test sets. The results show that
convolutional networks can classify Hebrew script sub-types on a typical
test set with accuracy much higher than the accuracy on the blind test.

Keywords: Paleography - Handwritten style analysis - Hebrew medieval
manuscripts - Script type classification: Learning-based classification -
Convolutional Neural Network

1 Introduction

Robust and accurate algorithms in document image analysis can be developed
and compared by the public availability of labeled datasets. A vital document
image analysis task is to provide solutions for the study of ancient and medieval
handwriting.

Paleography (from Greek ”palaios” - “old” and ”graphein” - “to write”) is
a study of handwriting. Throughout history, different script types were used for
different types of manuscripts; these script types appeared, developed, and dis-
appeared as time went by. The classification of script types started in the middle
ages, and the contemporary paleography research of Latin, Greek, and Hebrew
scripts emerged in the mid-20th century. An experienced librarian who works
with medieval or ancient manuscripts knows to recognize and read the scripts
of a given collection. A researcher specially trained to recognize and compare
all medieval and ancient script types and sub-types is called a paleographer.
The paleographic analysis is used to determine the place and date of writing
manuscripts that have no date, fragmentary and damaged manuscripts, etc. In
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some cases, it is possible, by comparison, to identify the scribe, to check the
manuscripts’ authenticity, or derive other essential data.

Contemporary Hebrew paleography emerged in the mid-1950s, concurrently
with modern Latin paleography. The theoretical basis of Hebrew paleography is
formulated in the works of Malachi Beit-Arié, Norman Golb, Benjamin Richler,
Colette Sirat [2[812327I20/T9]. Hebrew manuscripts have a stereotyped nature
of handwriting, which is a product of the cultural and pedagogical convention. A
scribe was required to emulate the writing of his master until the forms of their
writing become indistinguishable. This stereotypical script of a specific region is
called a script type; script sub-types reflect the time of writing the manuscript
or its type, whereas the separation of the hands within a single script sub-type
is referred to as a unique handwriting style.

The digital era has enabled Hebrew manuscript images to be accessible pub-
licly. This paper exploits these manuscript images to introduce the first publicly
available Hebrew paleography dataset called VML-HP (Visual Media Lab - He-
brew Paleography). We believe that Hebrew paleography dataset is an important
resource for developing a large-scale paleographic analysis of Hebrew manuscripts
as well as for evaluating and benchmarking the analysis of algorithms for script
classification. A trained paleographer can only describe a limited number of
manuscripts, the number of such paleographers is very small, and there are still
manuscript collections without even a good basic catalogue. We believe that a
proper algorithm will become an essential tool in manuscripts’ research.

Contemporary Hebrew paleography identifies six main-types of scripts: Byzan-
tine, Oriental, Yemenite, Ashkenazi, Italian, Sephardic. Each main script type
may contain up to three sub-types of scripts: square, semi-square, cursive (Fig. .
In total, there are 15 script sub-types, which are included in the VML-HP
dataset. Fig. [2 shows example document patches for each Hebrew script sub-
type from the dataset. The VML-HP dataset contains a train set and two test
sets. The first test set is called the typical test set and is composed of unseen
pages from the manuscripts used in the train set. The second test set is called
the blind test set and is composed of unseen pages from the manuscripts not
used in the train set. Currently, the VML-HP dataset can be downloaded from
http://www.cs.bgu.ac.il/~berat/.
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Fig. 1. Medieval Hebrew script has six main-types, and each main-type has up to three
sub-types. In total, there are 15 sub-types of Hebrew script.
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Fig. 2. Example document image patches of the 15 Hebrew script types.

In this paper, we investigate two problems: (1) the classification of the 15
script types available in the VML-HP dataset, and (2) the distinction between
square and cursive scripts, regardless of the script main-type. Distinguishing
between square and cursive scripts can help to identify important sections of a
manuscript, which are often written in a different script sub-type. Such sections
include colophon (an inscription at the end, less often at other places, of the
manuscript that tells when, where, and by whom it was written), the owner’s
notes and more. Since colophon and other text notes are the primary sources of
information about the manuscript, knowing exactly where they are located on
the page would be a great help for a researcher.

We provide baseline results for the two classification problems using several
convolutional neural networks. The networks are trained to classify patches that
are extracted from the pages in the VML-HP dataset. Each network is evalu-
ated on the blind and typical test sets at patch level and page level, where a
page is classified based on the majority vote of its patches. Unsurprisingly, all
of the networks achieved significantly higher accuracy on the typical test set
compared to the blind test set, with ResNet50 giving the best performance. In
addition, we explore preprocessing the input patches and applying different data
augmentation strategies to improve the results.

The rest of the paper is organized as follows: Section [2] is a short survey
of the related literature. Section [3] describes the theoretic foundation, collection
and properties of the VML-HP dataset. Section [4] explains two ground truth
formats provided with the dataset. In Section [ we evaluate several deep learning
classifiers on VML-HP.
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2 Related Work

During the last decade, various computer vision techniques were employed for
paleography analysis. Earlier methods used manually defined features, mostly
based on textural, grapheme-based descriptors, and their combination [T4UT3J12].

Over the recent decade, deep learning methods have achieved new standards
in many research frontiers. The early work [I0J4] trained CNNs to classify the
writing styles and used the penultimate layer activations as features. Such su-
pervised methods require a lot of labeled data. Christlein et al.[5] and Hosoe
et al.[T5] showed that deep activations learned in an unsupervised manner can
perform better. In a writing style classification dataset, the training classes are
different from the test ones. To handle this difference, Keglevic et al.[T7] propose
to use a triplet CNN that measures the similarity of two image patches instead of
training a classification network on surrogate classes. The work of Abdalhaleem
et al.[1] examines the in-writer variations in a manuscript. Their model is based
on Siamese convolutional neural networks, where the model is trained to learn
the tiny changes in a person’s writing style.

Deep learning methods won first place in the competitions on the classifica-
tion of medieval handwritings in Latin script [87] held in 2016 and 2017. The
objective of the competition was to classify medieval Latin scripts into 12 clas-
ses according to their writing style. Also, another level of classification - the
date classification - was added in [7]. The results show that deep learning mod-
els can classify Latin script types with acceptable accuracy, more than 80% on
homogeneous document collections (TIFF format only) and about 60% on het-
erogeneous documents (JPEG and TIFF images). Studer et al. [24] studied the
effect of ImageNet pre-training for different historical document analysis tasks,
including style classification of Latin manuscripts. They investigated a number
of well-known architectures: VGG19 [22], Inception V3 [25], ResNet152 [I1] and
DenseNET12 [16]. The models were trained from scratch and obtained 39% to
46% accuracy rate on the script classification task, while the pre-trained models
obtained a 49% — 55% accuracy rate.

Early research on the paleographic classification of Hebrew documents is
described in [26], where authors apply computerized tools on the documents from
the Rabbanite Cairo Genizah collection. They construct a dictionary based on
k-means clustering and represent each document using a set of descriptors based
on the constructed prototypes. Dot product is applied between the descriptors
of two documents to measure their similarity. The results depend crucially on
the methods used to construct the dictionary. Dhali et al. [9] apply textural and
grapheme-based features together with support vector regression to estimate a
date of the ancient manuscripts from Dead Sea Scrolls collection.

This paper utilizes deep learning models to classify medieval Hebrew manu-
scripts according to their script type. Our dataset mainly includes manuscripts
from SfarData collection (see Section [3)). In some rare cases, we added manu-
scripts from other collections to balance the number of representative documents
in each class.
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3 Construction of VML-HP

VML-HP dataset is built upon a theoretic foundation of contemporary Hebrew
paleography. It contains 537 accurately labeled, high-resolution manuscript page
images that are hierarchically organized into six main-types and 15 sub-types
of Hebrew script (Fig. . A Hebrew paleographer collected and labeled these
manuscript page images manually.

3.1 SfarData

SfarDataEL an ongoing database project based on the Hebrew Paleography project,
in cooperation with the Israeli Academy of Sciences and Humanities and the Na-
tional French Center for Scientific Research (CNRS), was initiated by Malachi
Beit-Arié in the 1970s. Paleograpic and codicological creteria of our project are
derived from this site. Sfardata aims to locate, classify, and identify all existing
dated Hebrew manuscripts written before 1540. Today it includes almost 5000
manuscripts, which makes about 95% of the known dated medieval Hebrew man-
uscripts. This database is currently hosted at the site of the National Library
of Israel. It includes the codicological and paleographical features of the manu-
scripts obtained in situ, i.e., in the libraries in which they are kept. The project
intends to study and classify these features to expose the historical typology of
Hebrew manuscripts.

The most important collection of digitized and microfilmed Hebrew man-
uscripts belongs to the Institute for Microfilmed Hebrew manuscripts at the
National Library of Israel. The Institute has been collecting microfilms (now
digital photos) of Jewish manuscripts for decades, and its goal is to obtain digi-
tal copies of all Hebrew manuscripts worldwide. Today, the Institute hosts more
than 70,000 microfilms and thousands of digital images, which makes more than
90% of the known Hebrew manuscripts in the world.

3.2 Collecting manuscript pages

Initially, the primary criterion for selecting manuscripts for our project was the
fact that they were described in the SfarData. In cases when this turned out to
be impossible, we chose manuscripts based on the SfarData criteria. Two sub-
types proved to be particularly problematic: the Oriental square and Ashkenazi
cursive. The Oriental square is the oldest Hebrew script sub-type. Most man-
uscripts written in this script type are not complete (collection of fragments).
The better-preserved ones are kept in the National Library of Russia (Firkowicz
manuscripts’ collections), whose collections have not yet been entirely digitized.
The Ashkenazi cursive, on the other hand, is a very common script with lots of
manuscripts. However, it developed and began to be actively used only shortly
before 1540, and thus there are not enough examples in the SfarData.

* http://sfardata.nli.org.il/
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Pages in the VML-HP dataset were extracted from high-quality digitized
manuscripts. Among the manuscripts described in SfarData, we gave first pref-
erence to those kept in the National Library of Israel. When this was impossible,
we used manuscripts from other libraries, first and foremost the British Library
and the Bibliotheque Nationale de France, which have vast collections of digi-
tized manuscripts available for download. Whenever good quality digital photos
of manuscripts were not available or were of insufficient quantity for some He-
brew script sub-types, we turned to microfilms from the collection of the Institute
for Microfilmed Hebrew manuscripts at the National Library of Israel.

The initial dataset that is described in this paper is relatively small. The rea-
son is that all the manuscripts were manually picked up by our team’s paleogra-
pher. Each chosen manuscript, except that it met the requirements described in
the previous paragraph, had to be written in a typical (and not deviated) script
sub-type that it stood for, had to have one script per page (and not multiple
scripts on one page), etc. This meant weeks and even months of work. Also, the
number of manuscripts of the required quality and available for download turned
out to be very limited.

3.3 Properties of VML-HP

VML-HP aims to provide complete coverage of the Hebrew paleography study. It
contains accurately labeled page images for each of the 15 sub-type scripts. The
VML-HP dataset contains a train set and two test sets. The first test set is called
the typical test set and is composed of unseen pages from manuscripts used in
the train set. The second test set is called the blind test set and is composed of
unseen pages from manuscripts that are not used in the train set. The blind test
set is more challenging as it comes from another distribution than the train set’s
distribution; however, it is necessary for evaluating and benchmarking algorithms
in a real-world scenario. Table [I| shows the distributions of the number of pages
per main-type and sub-type scripts in the train set and two test sets. VML-
HP is constructed with the goal that all the discriminator features of a script
type are included in the page images with all possible variable appearances. To
our knowledge, this is the first accurately labeled Hebrew paleography dataset
available to the document image analysis research community.

4 Ground truth of VML-HP

VML-HP dataset images are accurately labeled by a Hebrew paleographer at
page level. However, page level labels are not always fully useful for a com-
puter algorithm because historical document images suffer from several issues,
such as physical degradation, ink bleed through, ink degradation, and image
noise. In addition, hand painted motifs commonly appear in mediaval man-
uscripts. Therefore, we provide a clean patch generation tool that generates
image patches with approximately five text lines. And we include additional
ground truth format which stores the coordinates of bounding polygons around
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Main-Type Sub-Type Train Typical Test Blind Test Total
Square 16 4 10 30
. Semi-Square 16 3 10 29
Ashkenazi Cursive 16 4 10 30
Total 48 11 30 89
Square 16 4 10 30
Byzantine Semi-Square 16 4 10 30
Total 32 8 20 60
Square 16 4 10 30
Ttali Semi-Square 16 4 10 30
atat Cursive 16 4 10 30
Total 48 12 30 90
Square 64 14 10 98
Oriental Semi-Square 16 4 10 30
Total 80 18 20 118
Square 16 4 10 30
. Semi-Square 24 6 10 40
Sephardic Cursive 16 4 10 30
Total 56 14 30 100
Square 24 6 10 40
Yemenite Semi-Square 24 6 10 40
Total 48 12 20 80
Total 312 75 150 537

Table 1. The distributions of the number of pages per main-type and sub-type scripts
in the train set and two test sets.

the text regions into PAGE-XML [6/I8] files. The PAGE-XML files and the
clean patch generation tool are available together with the dataset at http:
//www.cs.bgu.ac.il/~berat/.

4.1 Clean patch generation algorithm

Often occurring non-text elements cause a naive patch generation algorithm
(that only considers the foreground area) to generate patches with irrelevant or
limited features (Fig. . Moreover, varying font-sizes across manuscripts may
lead to low level cues like the number of text lines or sizes of characters in a
patch.

To ensure that the classifier algorithm extracts the desired features, script
shape features in our case, we propose a clean patch generation algorithm that
can generate patches containing pure text regions and an approximately equal
number of text lines. A document image patch needs to include the maximum
possible amount of script features while still fitting the memory requirements.
According to paleographers, a patch would be sufficient to figure out the script
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Fig. 3. Example patches generated by a naive algorithm. Some patches contain irrele-
vant features, some patches contain only a few characters, and others contain no text
at all.

type if it contains approximately five text lines. We first calculate the patch
size s X s that includes approximately five text lines for each page. Then, we
randomly generate patches of the size s x s from this page and resize them to
the appropriate size based on the network and memory requirement. Finally,
we validate the generated patches according to the additional criteria described
below.

Extracting patches with n text lines To calculate the patch size s that
includes n text lines, we extract k random patches of the size equal to one-tenth
of the page height. A patch of this size usually includes several text lines. The
desired patch size is given by s = h/10 x n/m, where h is the height of the page,
n is the average targeted number of lines, and m is the actual average number
of lines in the k extracted patches. The number of lines in a given patch is
computed by counting the peaks of the y profile using Savitzky-Golay filter [21].
We used n = 5 and k = 20.

Patch validation Each extracted patch is validated according to the following
conditions:

— The foreground area should be at least 20% of the total patch area and not
exceed 70% of the total patch area. This condition eliminates almost empty
patches and patches with large spots, stains, or decorations.

— The patch should contain at least 30 connected components. This condition
eliminates patches with few foreground elements.

— The variance of the x and y profiles denoted by ¢, and o, respectively,
should satisfy the conditions o, < T, oy > T,,. Assuming horizontal text
lines, the variance of the x profile should be relatively low. During our ex-
periments we set T, = 1500 and T}, = 500

— The following inequality should be satisfied:

v

0.5 < EZI_:O%»((ZZ)) <15 (1)

Where v is the number of values in the x profile and P, (i) is the i-th value.
This condition eliminates the patches with text lines that occupy only a
fraction of a patch.
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4.2 Clean patch generation results

Fig. [] shows some example output patches from the clean patch generation al-
gorithm, and Fig. [5|illustrates that the generated patches are sampled uniformly
over the text regions.
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Fig. 4. Example output patches from the clean patch generation algorithm.

IR EEEEEEEEEEE)

Fig. 5. Heat maps illustrate the location distribution of the generated patches covers
the text regions.

5 [Evaluation of deep learning classifiers on VML-HP

In this section, we report the results of several deep learning classifiers. These
experiments provide baseline results for potential benchmarking and underline
that real-world problems are significantly challenging. First, we demonstrate the
necessity of having two test sets, the typical test set and the blind test set. Then,
we introduce the setting used in all the experiments, followed by evaluating
different types of convolutional networks. Finally, we investigate the influence of
preprocessing the input patches and the influence of different data augmentation
strategies.

5.1 Real world challenge

A dataset is usually split randomly into training, validation, and test sets. In such
a scenario, pages belonging to the same manuscript may appear in the training
and test sets. While this is a standard scheme, such a split can lead to misleading
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results. The model can learn to identify features specific to a manuscript, such as
a background texture, ink color, or handwriting style. These features, as a whole,
can mistakenly be used for classification. To assess this, we created a blind test
set containing pages from manuscripts that are not present in the train set.

The necessity of a blind test set is visualized by training a pretrained ResNet50
and embedding the extracted feature vectors onto 2D space using t-SNE. Fig. [0]
shows the train, typical test, and blind test set clusters before the training. Fig.[7]
shows the train, typical test, and blind test set clusters after the training. The
training embeds the train set samples and the typical test set samples onto com-
pact and well-separated clusters relative to the fuzzy clusters of the blind test
set samples. This shows the hardness of discovering a pattern among the blind
test set samples.

Train Blind Test Typical Test
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Fig. 6. Initial distribution embedding of the train, typical test and blind test sets before
training.

5.2 Experimental setting

We experiment with several convolutional network architectures. In all the ex-
periments, we train the network on the training set and test it on both test
sets, typical and blind. First, we generate 150K train patches, 10K typical test
patches, and 10K blind test patches of size 350 x 350 using the clean patch gener-
ation algorithm proposed in Section [£.I] Input patches are normalized in terms
of their pixel values. The objective training function is cross-entropy loss and
is minimized using the Adam optimizer algorithm. We continue training until
there is no improvement in validation loss with five epochs’ patience and save
the model with the least validation loss for testing.
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Fig. 7. Final distribution embedding of the train, typical test and blind test sets after
training.

Classification results are evaluated by patch and page levels accuracy. For
the page level accuracy, the label of a page is computed by taking the majority
vote of the predictions of 15 patches from the page.

5.3 Effect of network type

Table [2] shows the accuracy results for classifying 15 script sub-types using dif-
ferent convolutional networks, comparing the typical test set and the blind test
set at patch and page levels. The results indicate that the typical test set patches
and pages are easier to classify. At nearly all levels and sets, the performance of
the ResNet50 classifier is consistently higher but does not surpass 40% accuracy
on the blind test set. The difference between the typical test set accuracy and
the blind test set accuracy indicates overfitting on irrelevant features. However,
the random guess accuracy of 15 classes is 7.6%, indicating that the network
extracts script type-dependent features and improves the random classification
accuracy. We argue that script type classification is an expressible function, but
the network needs more data to learn this function.

Table [3| shows the accuracy results for classifying square and cursive script
sub-types using different convolutional networks, comparing the typical test set
and the blind test set at patch and page levels. The typical test set accuracy is
fully saturated, whereas there is little room for improvement at blind test set
accuracy. This result strengthens the above argument because decreasing the
number of classes from 15 to two increases the number of samples per class,
leading to higher accuracy.
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Table 2. Patch and page level accuracies on typical test set and blind test set using
different network architectures for classifying 15 script sub-types.

Patch level Page level
Typical Blind  Typical Blind

DenseNet 9797  32.95 98.63  38.36
AlexNet 91.99 27.03 93.15  28.28
VGGI11 99.16 35.55 100 35.63
SqueezeNet  98.03  30.38 98.63  29.45
ResNet18  97.07  30.95 98.63  34.25
ResNet50 99.55  36.15 98.63  39.73
Inception v3  94.94 26.41 95.89  26.71

Table 3. Patch and page level accuracies on typical test set and blind test set using
different network architectures for classifying square and cursive script sub-types.

Patch level Page level
Typical Blind  Typical Blind

DenseNet  99.85  87.06 100 83.72
AlexNet  99.48  88.01 100 91.86
VGG11 99.93 86.45 100 88.37
ResNet1l8 99.65 86.85 100 87.21
ResNet50  99.99  90.58 100 94.19
SqueezeNet  98.03  82.45 100 86.05
Inception v3  99.16  82.06 100 80.23

5.4 Effect of preprocessing

As the irrelevant background features might lead to poor training, we prepro-
cess the patches by applying a bilateral filter and a bandpass filter, reducing the
amount of information passed to the network through the background pixels.
Hence, improving the overfitting of a convolutional network on spurious back-
ground frequencies. Table [4] shows the effect of preprocessing using a ResNet50
network on 15 script sub-types. As validated in the results, preprocessing further
boosts the performance to 42.1% and 49.3% accuracy at patch and page levels,
respectively.

Table 4. Effect of preprocessing at patch and page level accuracies using a ResNet50
network on blind test set for classifying 15 script sub-types.

Preprocessing Patch level Page level

X 36.15% 39.73%
v 42.10% 49.30%
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5.5 Effect of augmentation

It is known that augmenting the training data increases the model’s ability to
overcome overfitting. We experimented using various combinations of augmen-
tation methods, such as random scaling by a factor between 1.0 and 1.2, random
rotation by a degree between —30° and 30°, and random horizontal flipping.

Table [5] shows the effect of augmentation at patch and page levels accuracy
results on the blind test set for classifying 15 script sub-types using a ResNet50
network. Random rotation and horizontal flipping boost the accuracy at both
the patch and page levels. However, random scaling only improves the patch level
accuracy. In addition, we can conclude that applying all augmentation strategies
at once is counterproductive. Perhaps it biases the network through the train
set distribution, which is very dissimilar to the data distribution that the model
is tested on.

Furthermore, we experimented with combining preprocessing and augmen-
tation. However, doing so did not improve the results, and in some cases, it
worsened it. We hypothesize that in some cases, combining preprocessing and
augmentation results in the loss of text features, which reduced the classification
accuracy.

Table 5. Effect of augmentation by patch and page levels accuracy results on blind
test set for classifying 15 script sub-types using a ResNet50 network.

Augmentations Patch level Page level
Scaling Rotation H. Flip

36.15% 39.73%
38.76% 32.88%
37.11% 42.47%
38.30% 43.84%
32.06% 30.82%

N X X N X
N X N X X
NN X X X

5.6 Comparing deep neural networks against a paleographer expert

To compare the deep learning networks against a paleographer expert, we per-
formed a classification experiment. In this experiment, we ask a paleographer to
classify 75 document patches according to the 15 script sub-types. The document
patches were randomly chosen from the set of patches used in our experiments,
five from each sub-type. The accuracy rate of the paleographer expert is 70%.
We can draw two conclusions from this experiment. First, the problem was chal-
lenging for the human expert due to the unusual format: paleographers work
with manuscripts and pages, not patches. Second, there is a large room for im-
provement for automatic classification. As we previously pointed, we expect that
training the networks on a larger dataset will improve the classification rate on
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the blind test set. A potential limitation of this experiment is that it was per-
formed only with one paleographer expert. Unfortunately, the number of Hebrew
paleographers is extremely small, and we did not want to involve the paleogra-
phers who created the SfarData. However, we do not expect a larger experiment
to change the results significantly.

6 Conclusion

Automatic paleographic analysis of historical documents is a challenging task,
and benchmark datasets lie at the heart of the development, assessment, and
comparison of the algorithms. This paper introduces a medieval Hebrew manu-
scripts dataset, VML-HP dataset, which includes 537 pages labeled with 15 script
sub-types. The VML-HP dataset contains a train set, typical and blind test sets.
The VML-HP is the first publicly available Hebrew paleographic dataset.

We report baseline results of several established deep learning classification
networks. Results show that there is a big room for improvement on the blind
test set, whereas the typical test set is an easier mission. In addition, we showed
that preprocessing the input patches by applying a bilateral filter and a bandpass
filter boosts the model’s performance. Furthermore, we explored different data
augmentation strategies.
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