
Unsupervised deep learning for text line
segmentation

Berat Kurar Barakat∗, Ahmad Droby∗, Reem Alaasam∗, Boraq Madi∗,
Irina Rabaev§, Raed Shammes∗ and Jihad El-Sana∗

∗ Ben-Gurion University of the Negev
{berat,drobya,rym,borak,rshammes}@post.bgu.ac.il

§ Shamoon College of Engineering
irinar@ac.sce.ac.il

Abstract—We present an unsupervised deep learning method
for text line segmentation that is inspired by the relative variance
between text lines and spaces among text lines. Handwritten
text line segmentation is important for the efficiency of further
processing. A common method is to train a deep learning
network for embedding the document image into an image of
blob lines that are tracing the text lines. Previous methods
learned such embedding in a supervised manner, requiring the
annotation of many document images. This paper presents an
unsupervised embedding of document image patches without a
need for annotations. The number of foreground pixels over the
text lines is relatively different from the number of foreground
pixels over the spaces among text lines. Generating similar
and different pairs relying on this principle definitely leads
to outliers. However, as the results show, the outliers do not
harm the convergence and the network learns to discriminate
the text lines from the spaces between text lines. Remarkably,
with a challenging Arabic handwritten text line segmentation
dataset, VML-AHTE, we achieved superior performance over
the supervised methods. Additionally, the proposed method was
evaluated on the ICDAR 2017 and ICFHR 2010 handwritten text
line segmentation datasets.

I. INTRODUCTION

Text line segmentation is a classical document image analy-
sis problem that has impact on the performance of subsequent
analysis operations. The objective of text line segmentation
is to recognize all the pixels that belong to a text line, as

shown in Fig. 1(d). Text line segmentation contains both,
text line detection and text line extraction. Text line detection
roughly locates text line patterns, whereas text line extraction
precisely assigns pixels to the text lines. Detection results can
be represented by baselines or blob lines (Fig. 1(c)). Extraction
can be represented by pixel labels (Fig. 1(d)) or bounding
polygons. The final goal of a text line segmentation procedure
is to provide text lines one by one into the next document
analysis procedure.

Recently, numerous deep learning based methods have been
proposed for text line segmentation of handwritten documents.
Learning based methods [1]–[4] can inherently handle the
problems arising from complex layout of text lines and het-
erogeneity of documents. However, they require a vast amount
of labeling effort which consumes time not less than carefully
designed ad-hoc heuristics [5]–[8]. Intuitively, labeling effort is
favorable over designing ad-hoc heuristics because the former
can be accomplished by human recognition skills, whereas the
latter requires further mathematical skills.

This paper presents a simple but interestingly successful
unsupervised convolutional network for text line segmentation.
The input for the network is an unlabeled document image,
and the output is segmentation of text lines. The main idea
can be formulated that the visual discrimination of number of

(a)

Input document

(b)

Detected text lines

(c)

Blob lines

(d)

Extracted text lines

Fig. 1. Given a handwritten document image (a), UTLS learns to extract representation vectors of image patches where the distances between these vectors
are proportional to the similarity of patches. Three principal components of patch representation vectors are visualized as a pseudo-RGB image (b). The
pseudo-RGB images are thresholded onto blob lines that strike through text lines (c). Energy minimization with the assistance of detected blob lines extracts
the pixel labels of text lines (d).



foreground pixels in document image patches requires machine
to learn features that represent proximity and similarity of the
elements in the document image. According to the Gestalt
principle [9], such relevance among the elements of a docu-
ment image forms the basis of unsupervised segmentation of
text lines. In the first phase, we train a siamese network to learn
that two document image patches with relatively same/distinct
number of foreground pixels are similar/different. Certainly,
this measurement assigns many pairs improperly. However, the
outliers do not harm the convergence of the machine learning
[10]. Next, we extract representation vectors of document
image patches using the penultimate layer of a single branch
of the siamese network. Then, we reduce dimensions of
these vectors into their three principle components, which
enables producing pseudo-RGB images where similar pixels
in the embedded space correspond to similar colors [10].
The pseudo-RGB images are thresholded into blob lines that
hover the text lines. In the last phase, text lines are labeled
in pixel level using an energy minimization framework with
the assistance of the detected blob lines [11]. Experiments
on an Arabic handwritten textline extraction dataset, which
possesses challenges by crowded and cramped text lines, show
that Unsupervised Text Line Segmentation (UTLS) is more
effective than supervised methods. In addition, we achieved
comparable results on ICDAR 2017 [12] and ICFHR 2010
[13] handwritten text line segmentation datasets.

II. RELATED WORK

Text line detection and segmentation in historical document
images have been widely studied during the last decades, but
still remains an open problem for challenging documents.

During the years, numerous methods for text line extraction
have been proposed. Among the early approaches are projec-
tion profiles based methods, which were first applied to doc-
uments with horizontal text lines [14], [15], and subsequently
adapted to document with skewed [16], [17] and multi-skewed
text lines [18]. Another wide class of methods are grouping or
clustering methods that aggregate elements (such as pixels or
connected components) in a bottom up strategy [7], [19]–[21].
Smearing based methods [5]–[7], [22]–[24] target to enhance
the text line structure. Seam-carving methods build energy
map and compute seams that separate text lines (or seams that
pierce through text lines) [25]–[28]. Recently, learning-based
methods have shown promising results when applied for text
line segmentation of handwritten documents. Renton et al. [1]
employed a variant of Fully Convolutional Network (FCN)
with dilated convolutions for text line extraction. The model is
trained to output an X-height pixel labeling as text line repre-
sentation. Oliveira et al. [3] presented a CNN-based pixel-wise
predictor for addressing multiple tasks simultaneously: page
extraction, layout analysis, baseline extraction, and illustration
and photograph extraction. Their network is trained to predict
the binary mask of polygonal lines that represent baselines.
Kurar et al. [4] build a FCN to predict text line masks.
Their method targeted challenging documents, which contain
curved, multi-skewed and multi-directed text lines of different

fonts types and sizes. Kiessling et al. [29] presented method
based on a fully convolutional encoder-decoder network to
detect baselines in document images. The baseline definition
was modified slightly towards manuscripts written in Arabic
scripts. Mechi et al. [30] and Neche et al. [31] used an U-
net and RU-net deep-learning models, which are variants of
FCN. The models are trained for X-height based pixel-wise
classifications of text lines.

All of the learning based methods reviewed above are
supervised methods. We are not aware of any unsupervised
deep learning approach for text line segmentation. In this paper
we present an unsupervised deep learning method for text
line segmentation, and evaluate it on three publicly available
datasets.

III. METHOD

We present a method for unsupervised text line segmenta-
tion (UTLS) and show its effectiveness on handwritten docu-
ment images. The method uses a siamese convolutional net-
work to predict whether two given document image patches are
similar or different, driven by the number of foreground pixels
in the patches. After the training phase, a single branch of the
trained network is used to extract features of document image
patches, which are in turn visualized as pseudo-RGB images
(Fig. 1(b)) and thresholded into blob lines that strike through
text lines (Fig. 1(c)). Finally, we use an energy minimization
framework [24] to extract the pixel labels of text lines with the
assistance of the detected blob lines (Fig. 1(d)). This section
provides the details of data preparation, training, visualization
of blob lines and energy minimization procedures.

A. Data preparation

Data preparation consists of generating patches of the size
hp×wp pixels, cropped randomly from document images and
labeling every pair of patches either similar or different. The
patch height hp is estimated as three times of the average
character height in the document images. The patch width wp

is estimated experimentally per dataset. The labeling is done
automatically using a similarity score between two patches.

Given randomly cropped two image patches, let ai be the
number of foreground pixels in patch i where i ∈ {1, 2}. We
define the similarity score s as:

s =
min(a1, a2)

max(a1, a2)
(1)

Assume that a2 > a1 then, a1 and a2 are most similar when

(a2 − a1)→ 0 and
a1
a2
→ 1 and in turn s→ 1. (2)

a1 and a2 are most different when

(a2 − a1)→∞ and
a1
a2
→ 0 and in turn s→ 0. (3)



1) Patches similar by number of foreground pixels: This
strategy continues cropping two random patches until the
similarity score s satisfies the following condition:

s ≥ 0.7 (4)

Intuitively this strategy generates pairs where both centralize
either a text line part or a part of space between text lines
(Fig. 2).

Fig. 2. Every column shows a pair of similar patches. In a loosely manner,
both patches in each pair centralize either a text line part or a part of space
between text lines.

2) Patches different by number of foreground pixels: This
strategy continues cropping two random patches until the
similarity score s satisfies the following condition:

s ≤ 0.4 (5)

Intuitively this strategy generates pairs where one centralizes a
text line part and the other centralizes a part of space between
text lines (Fig. 3).

Fig. 3. Every column shows a pair of different patches. In a loosely manner,
one of the patches in each pair centralizes a text line part and the other
centralizes a part of space between text lines.

3) Patches different by background area: There also exist
a significant difference between the background areas and the
text areas in the document image. This strategy continues
cropping two random patches until one of the patches is from
background area and the other is from text area (Fig. 4). We
assume a patch is from background area if most of its pixels
are background pixels.

B. Training

The common deep learning practice for handwritten text line
segmentation is to adapt an embedding from the text lines
image into a blob lines image. The classifier is first trained
on a labeled set of text lines, and then expected to predict
blob lines. Unlike these methods, UTLS does not need labeled
data for mapping the text line image into a blob line image.

Fig. 4. Every column shows a pair of different patches. In a loosely manner,
either of patches in each pair contains either background area or foreground
area.

It is simply trained to distinct the text lines from the spaces
between text lines.

The overall architecture is a siamese network with two
identical branches. Each branch inputs an image patch and
outputs a feature representation of that image patch. Con-
sequently, these feature representations are concatenated and
fed to fully connected layers in order to classify whether the
two image patches are similar or different. The branches of
siamese network model is based on AlexNet [32] and through
experiments we tune the hyperparameters to fit our task. The
final architecture contains two branches of CNN, each of the
branches has five convolutional layers as presented in Fig. 5.
Dotted lines indicate identical weights, and the numbers in
parentheses are the number of filters, filter size and stride.
All convolutional and fully connected layers are followed by
ReLU activation functions, except fc5, which feeds into a
sigmoid binary classifier. The learning rate is 0.00001 and
the optimizing algorithm is ADAM.

fc2 (512)
fc1 (512)

pool4 (512, 2x2, 2)
conv5 (512, 3x3, 1)
conv4 (512, 3x3, 1)
pool3 (256, 2x2, 2)
conv3 (256, 3x3, 1)
pool2 (128, 2x2, 2)
conv2 (128, 5x5, 1)
pool1 (64, 2x2, 2)
conv1 (64, 5x5, 1)

patch1 
150x150

fc2 (512)
fc1 (512)

pool4 (512, 2x2, 2)
conv5 (512, 3x3, 1)
conv4 (512, 3x3, 1)
pool3 (256, 2x2, 2)
conv3 (256, 3x3, 1)
pool2 (128, 2x2, 2)
conv2 (128, 5x5, 1)
pool1 (64, 2x2, 2)
conv1 (64, 5x5, 1)

patch1 
150x150

fc2 (512) fc2 (512)

fc5 (1)
fc4 (1024)
fc3 (1024)

Fig. 5. Siamese architecture for pair similarity. Dotted lines stand for identical
weights, conv stands for convolutional layer, fc stands for fully connected layer
and pool is a max pooling layer.

We trained this model from scratch using 30, 000 pairs that
are generated and labeled according to the strategies described
in section III-A, and reached a validation loss value of 0.29
after 11 epochs (Fig. 6).



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11

Lo
ss

Epoch

Training loss

Validation loss

Fig. 6. Loss over the epochs of model training.

C. Visualization of blob lines for text line detection

Once the siamese network is trained, we use a single branch
to extract the features of patches. This embeds every patch into
a feature vector of 512 dimensions. To visualize the features
of a complete document image, a sliding window of the size
hp×wp is used, but only the inner window of the size hi×wi

is considered to eliminate the edge affect. In our experiments
we find (hi × wi) = (10, 10) gives the best results on all the
datasets. We also pad the document image with white pixels at
its right and bottom sides if its size is not an integer multiple
of the sliding window size. An additional padding is added at 4
sides of the document image for considering only the central
part of the sliding window. As a result, a document image
with the size hd × wd is mapped to a representation matrix
of the size hd × wd × 512. We project 512D vectors into
their three principle components and use these components
to construct pseudo-RGB image in which similar patches are
assigned the similar colors (Fig. 1(b)). Binary blob lines image
is an outcome of thresholded pseudo-RGB image (Fig. 1(c)).

D. Energy minimization for text line extraction

We adopt the energy minimization framework [33] that uses
graph cuts to approximate the minima of an arbitrary function.
We adapt the energy function to be used with connected
components for extracting the text lines. Minimum of the
adapted function correspond to a good extraction which urges
to assign components to the label of the closest blob line while
straining to assign closer components to the same label.

Let L be the set of binary blob lines, and C be the
set of components in the binary document image. Energy
minimization finds a labeling f that assigns each component
c ∈ C to a label lc ∈ L, where energy function E(f) has the
minimum.

E(f) =
∑
c∈C

D(c, `c) +
∑

{c,c′}∈N

d(c, c′) · δ(`c 6= `c′) (6)

The term D is the data cost, d is the smoothness cost, and
δ is an indicator function. Data cost is the cost of assigning
component c to label lc. D(c, `c) is defined to be the Euclidean
distance between the centroid of the component c and the
nearest neighbour pixel in blob line lc for the centroid of
the component c. Smoothness cost is the cost of assigning

neighbouring elements to different labels. Let N be the set of
nearest component pairs. Then ∀{c, c′} ∈ N

d(c, c′) = exp(−β · dc(c, c′)) (7)

where dc(c, c′) is the Euclidean distance between the centroids
of the components c and c′, and β is defined as

β = (2 〈dc(c, c′)〉)−1 (8)

〈·〉 denotes expectation over all pairs of neighbouring compo-
nents [34] in a document page image. δ(`c 6= `c′) is equal to 1
if the condition inside the parentheses holds and 0 otherwise.

IV. DATASETS

We evaluated the proposed method on three publicly avail-
able handwritten datasets: VML-AHTE, ICDAR 2017 [12] and
ICFHR 2010 [13].

A. VML-AHTE
Visual Media Lab - Arabic Handwritten Textline Extraction

(VML-AHTE) dataset is a collection of 30 pages selected
from several manuscripts. It is a newly published dataset
and available online for downloading1. VML-AHTE dataset
is challenging in terms of rich diacritics, and touching and
overlapping characters, as shown in Fig.7.

Touching letters Overlapping letters Rich diacritics

Fig. 7. Some samples of challenges in VML-AHTE dataset.

B. ICDAR 2017
ICDAR 2017 dataset [12] contains 150 pages from 3

medieval manuscripts: CB55, CSG18 and CSG863, see Fig. 8
for an example. Among them, CB55 is characterized by a vast
number of touching text lines.

CB55 CSG18 CSG863

Fig. 8. Diva-HisDB dataset contains 3 manuscripts: CB55, CSG18 and
CSG863. Notice the touching characters among multiple consecutive text lines
in CB55.

C. ICFHR 2010
ICFHR 2010 dataset [13] is particularly challenging as it

comprises handwriting from different languages and writers.
The text lines are skewed and have varying sizes as well as
interline spacing, as shown in the example page in Fig. 9.

1https://www.cs.bgu.ac.il/∼berat/data/ahte dataset

https://www.cs.bgu.ac.il/~berat/data/ahte_dataset
https://www.cs.bgu.ac.il/~berat/data/ahte_dataset


Skewed lines Close interline Touching lines

Fig. 9. ICFHR 2010 dataset contains unconstrained handwritten documents.

V. EXPERIMENTS

Our experimental study covers three datasets that are dif-
ferent in terms of the text line segmentation challenges they
contain. On one hand, VML-AHTE dataset exhibits crowded
diacritics and cramped text lines, whereas ICDAR 2017 dataset
contains consequently touching text lines. On the other hand,
ICFHR 2010 dataset is heterogeneous by document resolu-
tions, text line heights and skews. Therefore, the proposed
algorithm does not use universal values for all the experi-
mented datasets. In this section we present the effect of patch
size and similarity score values on the method’s performance.
The performance is measured using the line segmentation
evaluation metrics of ICDAR 2013 [13] and ICDAR 2017 [35].

A. ICDAR 2013 line segmentation evaluation metrics

ICDAR 2013 metrics calculate recognition accuracy (RA),
detection rate (DR) and F-measure (FM ) values. Given a set
of image points I , let Ri be the set of points inside the ith

result region, Gj be the set of points inside the jth ground
truth region, and T (p) is a function that counts the points
inside the set p, then the MatchScore(i, j) is calculated by
Equation 9

MatchScore(i, j) =
T (Gj ∩Ri)
T (Gj ∪Ri)

(9)

The evaluator considers a region pair (i, j) as a one-to-one
match if the MatchScore(i, j) is equal or above the threshold,
which we set to 90 for all evaluations except for ICFHR 2010
dataset to 95 for results to be comparable. Let N1 and N2 be
the number of ground truth and output elements, respectively,
and let M be the number of one-to-one matches. The evaluator
calculates the DR, RA and FM as follows:

DR =
M

N1
(10)

RA =
M

N2
(11)

FM =
2×DR×RA
DR+RA

(12)

B. ICDAR 2017 line segmentation evaluation metrics

ICDAR 2017 metrics are based on the Intersection over
Union (IU). IU scores for each possible pair of Ground Truth
(GT) polygons and Prediction (P) polygons are computed as
follows:

IU =
IP

UP
(13)

IP denotes the number of intersecting foreground pixels among
the pair of polygons. UP denotes number of foreground pixels
in the union of foreground pixels of the pair of polygons. The
pairs with maximum IU score are selected as the matching
pairs of GT polygons and P polygons. Then, pixel IU and
line IU are calculated among these matching pairs. For each
matching pair, line TP, line FP and line FN are given by:

• Line TP is the number of foreground pixels that are
correctly predicted in the matching pair.

• Line FP is the number of foreground pixels that are
falsely predicted in the matching pair.

• Line FN is the number of false negative foreground pixels
in the matching pair.

Accordingly pixel IU is:

Pixel IU =
TP

TP + FP + FN
(14)

where TP is the global sum of line TPs, FP is the global sum
of line FPs, and FN is the global sum of line FNs.

Line IU is measured at line level. For each matching pair,
line precision and line recall are:

Line precision =
line TP

line TP + line FP
(15)

Line recall =
line TP

line TP + line FN
(16)

Accordingly, line IU is:

Line IU =
CL

CL+ML+EL
(17)

where CL is the number of correct lines, ML is the number
of missed lines, and EL is the number of extra lines.

For each matching pair:

• A line is correct if both, the line precision and the line
recall are above the threshold value.

• A line is missed if the line recall is below the threshold
value.

• A line is extra if the line precision is below the threshold
value.

0

10

20

30

40

50

60

70

0.1 0.3 0.5 0.7 0.9

P
ix

e
l 
IU

Similarity score

Same pairs Different pairs

Fig. 10. Effect of different similarity score values for similar pairs and
different pairs.



C. Effect of similarity scores

As we describe in section III-A two patches are most similar
when similarity score s→ 1 and most different when s→ 0.
We study this argument on a single page from VML-AHTE
dataset. First, we fix s ≥ 0.5 for similar pairs and report the
effect of t in s ≤ t for different pairs. Then, we fix s ≤ 0.5 for
different pairs and report the effect of t in s ≥ t for similar
pairs. The effect of different similarity score values can be
observed in Fig. 10.

D. Effect of patch size

We have found that the patch size is a critical value for the
effective performance of the algorithm. If the documents in a
dataset contain text lines that have severely different heights,
then the algorithm does not produce good results, as shown in
Fig. 11. This inaccuracy is caused by the inappropriate height
estimation, which is taken as three times the average text line
height in the documents. On the other hand we observe that a
constant patch size can detect text lines with slightly different
heights (Fig. 12).

(a) (b)

(c) (d)

Fig. 11. Two sample document images from ICFHR 2010 dataset with very
different text line heights (a) and (c). Same patch size can detect the text lines
when its height is approximately 3 times the text line height (b) and can not
detect the text lines when it spans several text lines together (d).

(a) (b)

Fig. 12. A sample document image with heterogeneous text line heights (a).
The pseudo-RGB output from the proposed method (b).

VI. RESULTS

A. Results on VML-AHTE dataset

We compare our results with those of supervised methods,
Mask-RCNN and FCN+EM and Human+EM. Mask-RCNN
method is fully supervised using the pixel labels of the text

lines. The advantage of this method is that it directly outputs
pixel labels of text lines and does not need an additional
procedure. FCN+EM method is also fully supervised but using
blob lines that pass over the text lines. It uses EM framework
to extract the pixel labels of text lines. Human+EM method is
supervised by blob lines that are drawn by a human and uses
EM framework to extract the pixel labels of text lines.

The comparison in terms of ICDAR 2013 metrics are
reported in Table I.

TABLE I
DR, RA AND FM VALUES ON VML-AHTE DATASET.

Method DR RA FM

Unsupervised
UTLS 93.62 93.95 93.78

Supervised
Mask-RCNN 84.43 58.89 68.77

FCN+EM 95.55 92.80 94.30
Human+EM 95.15 95.15 95.15

The comparison in terms of ICDAR 2017 metrics are
reported in Table II.

TABLE II
LINE IU AND PIXEL IU VALUES ON VML-AHTE DATASET.

Method Line IU Pixel IU

Unsupervised
UTLS 98.55 88.95

Supervised
Mask-RCNN 93.08 86.97

FCN+EM 94.52 90.01
Human+EM 99.29 91.49

On VML-AHTE dataset, UTLS successfully learns and
discriminates between the text lines and the spaces among
text lines. Moreover it outperforms all the supervised methods
in terms of RA and line IU, and is competitive in terms of
the other metrics. The error cases arise from few number of
touching blob lines. Such errors can easily be eliminated but
this is out of the focus of this paper.

B. Results on ICDAR 2017 dataset

The second evaluation is carried out on the Task 3 of
ICDAR 2017 Competition on Layout Analysis for Challenging
Medieval Manuscripts. Within the Task 3 only the main body
lines are in the scope of interest. We run our algorithm on pre-
segmented text block areas by the given ground truth. Hence,
we can compare our results with unsupervised System 8 and
System 9 which are based on layout analysis prior to text
line segmentation. The comparison in terms of ICDAR 2017
metrics are reported in Table III.

Main challenge in this dataset for UTLS is the wide spaces
between the words in a text line. The wider the space between
words the much likely the algorithm detects it as a space
instead of a text line, which in turn leads to over segmentation.



TABLE III
RESULTS FOR THE ICDAR 2017 COMPETITION ON LAYOUT ANALYSIS FOR CHALLENGING MEDIEVAL MANUSCRIPTS. LINE IU AND PIXEL IU RESULTS

FOR TASK 3

CB55 CSG18 CSG863
LIU PIU LIU PIU LIU PIU

Unsupervised
UTLS 80.35 77.30 94.30 95.50 90.58 89.40
System-8 (CIT-lab) 99.33 93.75 94.90 94.47 96.75 90.81
System-9+4.1 (DIVA+MG1) 98.04 96.67 96.91 96.93 98.62 97.54

LIU denotes Line IU and PIU denotes Pixel IU

C. Results on ICFHR 2010 dataset

This dataset contains very heterogeneous text lines with
excessively different heights, interline spaces, and skews.
The comparison on ICFHR 2010 dataset using ICDAR 2013
metrics are reported in Table IV.

Main challenge in this dataset for UTLS is the severely
different text line heights. The algorithm can not detect the
text lines with heights that are very greater than or very less
than the patch height (Figure 11).

TABLE IV
DR, RA AND FM VALUES ON ICFHR 2010 DATASET.

Method DR RA FM

Unsupervised
UTLS 73.22 72.38 72.36

Winner 97.54 97.72 97.63
Supervised

[36] 97.18 96.94 97.06

VII. CONCLUSION

We have presented an unsupervised text line segmentation
method UTLS, trained to discriminate the text lines from the
spaces between text lines. UTLS learn feature representations
that are comparable or superior to other models trained with
full supervision. The method is convenient in terms of average
prediction time per page using a single Intel Xeon GPU
(Table V).

The algorithm is very effective in detecting cramped and
crowded text lines with nearly constant heights, interline
spaces and interword spaces. However heterogeneity of afore-
mentioned features decreases the performance of UTLS sig-
nificantly.

TABLE V
AVERAGE PREDICTION RUN TIMES PER PAGE FOR EACH DATASET IN

TERMS OF MINUTES.

VML-AHTE ICDAR 2017 ICFHR 2010

Average run time per page 2.62 2.20 1.49

ACKNOWLEDGMENT

The authors would like to thank Gunes Cevik for data
preparation. This work was supported by Frankel Center for
Computer Science at Ben-Gurion University.

REFERENCES

[1] G. Renton, Y. Soullard, C. Chatelain, S. Adam, C. Kermorvant, and
T. Paquet, “Fully convolutional network with dilated convolutions for
handwritten text line segmentation,” International Journal on Document
Analysis and Recognition (IJDAR), vol. 21, no. 3, pp. 177–186, 2018.

[2] T. Grüning, G. Leifert, T. Strauß, J. Michael, and R. Labahn, “A two-
stage method for text line detection in historical documents,” Interna-
tional Journal on Document Analysis and Recognition (IJDAR), vol. 22,
no. 3, pp. 285–302, 2019.

[3] S. A. Oliveira, B. Seguin, and F. Kaplan, “dhSegment: A generic deep-
learning approach for document segmentation,” in 2018 16th Interna-
tional Conference on Frontiers in Handwriting Recognition (ICFHR).
IEEE, 2018, pp. 7–12.

[4] B. Kurar Barakat, A. Droby, M. Kassis, and J. El-Sana, “Text line
segmentation for challenging handwritten document images using fully
convolutional network,” in 2018 16th International Conference on
Frontiers in Handwriting Recognition (ICFHR). IEEE, 2018, pp. 374–
379.

[5] Y. Li, Y. Zheng, D. Doermann, and S. Jaeger, “Script-independent text
line segmentation in freestyle handwritten documents,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 30, no. 8, pp.
1313–1329, 2008.

[6] Z. Shi, S. Setlur, and V. Govindaraju, “A steerable directional local
profile technique for extraction of handwritten arabic text lines,” in 2009
10th International Conference on Document Analysis and Recognition.
IEEE, 2009, pp. 176–180.

[7] S. S. Bukhari, F. Shafait, and T. M. Breuel, “Script-independent hand-
written textlines segmentation using active contours,” in 2009 10th In-
ternational Conference on Document Analysis and Recognition. IEEE,
2009, pp. 446–450.

[8] R. Cohen, A. Asi, K. Kedem, J. El-Sana, and I. Dinstein, “Robust
text and drawing segmentation algorithm for historical documents,” in
Proceedings of the 2nd International Workshop on Historical Document
Imaging and Processing. ACM, 2013, pp. 110–117.

[9] K. Koffka, Principles of Gestalt psychology. Routledge, 2013, vol. 44.
[10] D. Danon, H. Averbuch-Elor, O. Fried, and D. Cohen-Or, “Unsupervised

natural image patch learning,” Computational Visual Media, vol. 5, no. 3,
pp. 229–237, 2019.

[11] B. Kurar Barakat, A. Droby, B. Madi, R. Alaasam, I. Rabaev, and J. El-
Sana, “Text line extraction using text line detection,” in 2020 14th IAPR
International Workshop on Document Analysis Systems (DAS). IEEE,
2020, pp. –.

[12] F. Simistira, M. Bouillon, M. Seuret, M. Würsch, M. Alberti, R. Ingold,
and M. Liwicki, “ICDAR2017 competition on layout analysis for
challenging medieval manuscripts,” in 2017 14th IAPR International
Conference on Document Analysis and Recognition (ICDAR), vol. 1.
IEEE, 2017, pp. 1361–1370.

[13] B. Gatos, N. Stamatopoulos, and G. Louloudis, “ICFHR 2010 hand-
writing segmentation contest,” in 2010 12th International Conference
on Frontiers in Handwriting Recognition. IEEE, 2010, pp. 737–742.



[14] J. Ha, R. M. Haralick, and I. T. Phillips, “Document page decomposition
by the bounding-box project,” in Proceedings of 3rd International
Conference on Document Analysis and Recognition, vol. 2. IEEE,
1995, pp. 1119–1122.

[15] R. Manmatha and N. Srimal, “Scale space technique for word segmen-
tation in handwritten documents,” in International conference on scale-
space theories in computer vision. Springer, 1999, pp. 22–33.

[16] M. Arivazhagan, H. Srinivasan, and S. Srihari, “A statistical approach
to handwritten line segmentation,” Document Recognition and Retrieval
XIV, Proceedings of SPIE, San Jose, CA, pp. 6500T–1, 2007.

[17] I. Bar-Yosef, N. Hagbi, K. Kedem, and I. Dinstein, “Line segmentation
for degraded handwritten historical documents,” in 2009 10th Interna-
tional Conference on Document Analysis and Recognition. IEEE, 2009,
pp. 1161–1165.

[18] N. Ouwayed and A. Belaı̈d, “A general approach for multi-oriented
text line extraction of handwritten documents,” International Journal
on Document Analysis and Recognition (IJDAR), vol. 15, no. 4, pp.
297–314, 2012.

[19] I. Rabaev, O. Biller, J. El-Sana, K. Kedem, and I. Dinstein, “Text line
detection in corrupted and damaged historical manuscripts,” in 2013
12th International Conference on Document Analysis and Recognition.
IEEE, 2013, pp. 812–816.

[20] R. Cohen, I. Dinstein, J. El-Sana, and K. Kedem, “Using scale-space
anisotropic smoothing for text line extraction in historical documents,”
in International Conference Image Analysis and Recognition. Springer,
2014, pp. 349–358.

[21] T. Gruuening, G. Leifert, T. Strauss, and R. Labahn, “A robust and
binarization-free approach for text line detection in historical docu-
ments,” in 2017 14th IAPR International Conference on Document
Analysis and Recognition (ICDAR), vol. 1. IEEE, 2017, pp. 236–241.

[22] K. Y. Wong, R. G. Casey, and F. M. Wahl, “Document analysis system,”
IBM journal of research and development, vol. 26, no. 6, pp. 647–656,
1982.

[23] A. Alaei, U. Pal, and P. Nagabhushan, “A new scheme for unconstrained
handwritten text-line segmentation,” Pattern Recognition, vol. 44, no. 4,
pp. 917–928, 2011.

[24] B. K. Barakat, R. Cohen, I. Rabaev, and J. El-Sana, “VML-MOC: Seg-
menting a multiply oriented and curved handwritten text line dataset,” in
2019 International Conference on Document Analysis and Recognition
Workshops (ICDARW), vol. 6. IEEE, 2019, pp. 13–18.

[25] R. Saabni and J. El-Sana, “Language-independent text lines extraction
using seam carving,” in 2011 International Conference on Document
Analysis and Recognition. IEEE, 2011, pp. 563–568.

[26] A. Asi, R. Saabni, and J. El-Sana, “Text line segmentation for gray scale
historical document images,” in Proceedings of the 2011 workshop on
historical document imaging and processing, 2011, pp. 120–126.

[27] M. Alberti, L. Vögtlin, V. Pondenkandath, M. Seuret, R. Ingold,
and M. Liwicki, “Labeling, cutting, grouping: an efficient text
line segmentation method for medieval manuscripts,” arXiv preprint
arXiv:1906.11894, 2019.

[28] A. Scius-Bertrand, L. Voegtlin, M. Alberti, A. Fischer, and M. Bui,
“Layout analysis and text column segmentation for historical vietnamese
steles,” in Proceedings of the 5th International Workshop on Historical
Document Imaging and Processing, 2019, pp. 84–89.

[29] B. Kiessling, D. S. B. Ezra, and M. T. Miller, “BADAM: A public dataset
for baseline detection in Arabic-script manuscripts,” in Proceedings of
the 5th International Workshop on Historical Document Imaging and
Processing, 2019, pp. 13–18.

[30] O. Mechi, M. Mehri, R. Ingold, and N. E. B. Amara, “Text line
segmentation in historical document images using an adaptive U-Net
architecture,” in 2019 International Conference on Document Analysis
and Recognition (ICDAR). IEEE, 2019, pp. 369–374.

[31] C. Neche, A. Belaı̈d, and A. Kacem-Echi, “Arabic handwritten docu-
ments segmentation into text-lines and words using deep learning,” in
2019 International Conference on Document Analysis and Recognition
Workshops (ICDARW), vol. 6. IEEE, 2019, pp. 19–24.

[32] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[33] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy min-
imization via graph cuts,” IEEE Transactions on pattern analysis and
machine intelligence, vol. 23, no. 11, pp. 1222–1239, 2001.

[34] Y. Y. Boykov and M.-P. Jolly, “Interactive graph cuts for optimal bound-
ary & region segmentation of objects in nd images,” in Proceedings

eighth IEEE international conference on computer vision. ICCV 2001,
vol. 1. IEEE, 2001, pp. 105–112.

[35] M. Alberti, M. Bouillon, R. Ingold, and M. Liwicki, “Open evaluation
tool for layout analysis of document images,” in 2017 14th IAPR Inter-
national Conference on Document Analysis and Recognition (ICDAR),
vol. 4. IEEE, 2017, pp. 43–47.

[36] M. Diem, F. Kleber, and R. Sablatnig, “Text line detection for heteroge-
neous documents,” in 2013 12th International Conference on Document
Analysis and Recognition. IEEE, 2013, pp. 743–747.


