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Abstract: Paleography is the study of ancient and medieval handwriting. It is essential for under-
standing, authenticating, and dating historical texts. Across many archives and libraries, many
handwritten manuscripts are yet to be classified. Human experts can process a limited number
of manuscripts; therefore, there is a need for an automatic tool for script type classification. In
this study, we utilize a deep-learning methodology to classify medieval Hebrew manuscripts into
14 classes based on their script style and mode. Hebrew paleography recognizes six regional styles
and three graphical modes of scripts. We experiment with several input image representations and
network architectures to determine the appropriate ones and explore several approaches for script
classification. We obtained the highest accuracy using hierarchical classification approach. At the
first level, the regional style of the script is classified. Then, the patch is passed to the corresponding
model at the second level to determine the graphical mode. In addition, we explore the use of soft
labels to define a value we call squareness value that indicates the squareness/cursiveness of the
script. We show how the graphical mode labels can be redefined using the squareness value. This
redefinition increases the classification accuracy significantly. Finally, we show that the automatic
classification is on-par with a human expert paleographer.

Keywords: digital paleography; handwritten style analysis; Hebrew medieval manuscripts; script
type classification; deep-learning based classification; convolutional neural network

1. Introduction

Historical manuscripts constitute valuable information explicitly via their textual
content and implicitly through their writing material, handwriting style, and other features.
Paleography is the study of ancient and medieval handwritings. The term is derived from
the Greek words palaios (“old”) and graphein (“to write”). Paleography is important for
understanding, authenticating, and dating historical texts.

During the last decades, many archives and libraries’ collections were digitized. How-
ever, processing these collections requires participation of an expert due to the following:
(1) reading historical texts demands knowledge of their grammar and dialectical variants,
e.g., grammars of the same language from 10th, 15th, and 21st centuries are different; (2) the
shape of letters changed and evolved over the time, i.e., many symbols look unfamiliar and
strange to modern reader; (3) medieval manuscripts made use of many abbreviations and
ligatures (letters joined together) that are not in use nowadays (see examples in Figure 1). A
trained paleographer can only describe a limited number of manuscripts, and the number
of such paleographers is very small. Moreover, to become a paleography expert, one needs
many years of hands-on experience. Many digital collections use outdated catalogs and
even uncatalogued collections. Therefore, the processing must be automated.

With advancements in image analysis and computer vision, automatic methods en-
hanced manual handwriting analysis. Document image processing can be divided into
classical machine learning techniques that require prior features selection, and deep neural
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network-based techniques where features are learned inside a network itself. The most
successful recent image classification approaches are deep learning-based.

One of the primary advantages of deep learning over traditional machine learning
algorithms is the ability of the model to learn features directly from the data. This can
save scientists weeks and months of work. Additionally, neural networks can reveal
novel, more complicated features that a human expert may overlook. That is why in
our research we utilize deep-learning technology for paleographic analysis of medieval
Hebrew manuscripts.

Figure 1. Examples of ligatures used in Hebrew ancient and medieval manuscripts that are not in
use today. Two letters are joined together into a single glyph.

The main contributions of this study include:

• A deep-learning-based classification of Hebrew manuscripts into 14 categories ac-
cording to the script types and graphical modes. To train a deep neural network, we
compiled a dataset of manuscripts that include these categories. To the best of our
knowledge, this is the first dataset that includes samples of major Hebrew writing
types and modes to address digital paleography community;

• Two different ground truth labeling schemes—hard-labeling and soft-labeling— for
training a deep-learning model. The margins between the categories of writing styles
are sometimes fuzzy and overlap on a visual appearances level. To categorize the
document, paleographers examine the visual appearance of the handwriting as well
as the codicological data, e.g., the media on which the document was written. Since
we are working with digital images only, we cannot utilize codicological data. We
hypothesize that hard-labeling may not be the ideal way for training a deep-learning
model to recognize the writing style. Therefore, for each page image, we decided to
add an additional level of labeling—a soft label. The soft label is a label vector, where
each element indicates the similarity of the document’s script to a specific script type
or mode. We experimentally compare and analyze hard and soft label results, and
discuss the issues of paleographic analysis of Hebrew writings;

• An evaluation of the performance of deep-learning model against the human-level
performance in classifying Hebrew script type. We show that deep-learning models
achieve classification accuracy that is close to the expert’s.

This paper is organized as follows. We start by describing the related work. After
that we provide a brief background on Hebrew paleography. Then, we move to describing
methodology and experiments, starting with data collection and classification, followed by
the description of the experimental setup. Then we present our finding, analyze the results,
and compare them versus human-level performance. Finally, we draw conclusions and
future work directions.

2. Related Work

Throughout the last decade, various computer vision algorithms have been ap-
plied/adapted for paleography analysis. Earlier techniques relied on hand-crafted features,
which were often based on textural and grapheme-based descriptors, and their combina-
tion [1–3]. During the recent years, deep learning approaches have set new benchmarks in
a variety of academic fields, and have also been adapted for paleographic analysis [4–8].
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Keglevic et al. [9] proposed to use a triplet CNN to measure the similarity of two image
patches. Abdalhaleem et al. [10] investigated in-writer differences in manuscripts. Their
methodology is built on Siamese convolutional neural networks, which are trained to
recognize little differences in a person’s writing style. Studer et al. [11] explored the effect
of ImageNet pre-training for various historical document analysis tasks, including style cat-
egorization of Latin manuscripts. They experimented with VGG19 [12], Inception V3 [13],
ResNet152 [14], DenseNET12 [15], and additional well-known architectures. The mod-
els trained from scratch achieved 39–46% accuracy rate, whereas the pre-trained models
achieved a 49–55% accuracy rate.

Two major competitions on the categorization of medieval handwritings in Latin
script [16,17] were organized in 2016 and 2017. The goal of the competitions goal was to
classify medieval Latin scripts into 12 categories based on their writing styles. The findings
reveal that deep learning models can accurately recognize Latin script types with more
than 80% accuracy on homogeneous document collections and about 60% accuracy on
heterogeneous document collections.

There have been few works on Hebrew document paleography. Wolf et al. [18]
explored handwriting matching and paleographic classification, focusing on the documents
from the Cairo Genizah collection. Dhali et al. [19] used textural and grapheme-based
features with support vector regression to determine the date of ancient texts from the
Dead Sea Scrolls collection. Ben Ezra et al. [20] trained a model for establishing the reading
order of the main text by detecting insertion markers that indicate marginal additions.
They used a corpus of 17 manuscripts of Tannaitic Rabbinic compositions dated from
the 10th to 15th centuries. The international Israeli and French team [21,22] worked on a
project that combined handwritten text recognition of Medieval Hebrew documents with
a crowdsourcing-based process for training and correction the HRT model. Their project
focused on a subset of rabbinic works dated to 1–500 CE.

The aforementioned projects have worked on different datasets and document types,
each addressing a different aspect of the challenge. These efforts work in tandem to achieve
the ultimate goal of recognizing handwritten writing in historical manuscripts. In this
study, we utilize deep learning models to classify medieval Hebrew manuscripts according
to their script types and modes.

3. Hebrew Paleography

Manuscripts are studied by means of paleography and codicology that explore the
writing and the material on which manuscripts are written, respectively. The theoretical
basis of Hebrew paleography and codicology are formulated in the works of Malachi
Beit-Arié, Norman Golb, Benjamin Richler, and Colette Sirat [23–29].

Hebrew manuscripts refers to manuscripts written in Hebrew characters, as the lan-
guage was often adopted from the host societies (Ladino, Judeo-Arabic, Yiddish, etc.).
Geographically, the spread of the Hebrew manuscripts was larger than Latin, Greek, or
Arabic manuscripts. Hebrew scripts themselves were influenced by the local traditions and
often resemble the manuscripts of the host societies in scribal manner, material, and ways
of production.

There are six main types of the Hebrew script: Oriental, Sefardic, Ashkenazi, Italian,
Byzantine, and Yemenite. Each script type may contain up to three graphical modes: square,
semi-square, and cursive. The writing styles of Hebrew manuscripts can be classified
into two branches based on their geographic origin. Oriental, Sefardic, and Yemenite
styles developed in Islamic regions and were influenced by the Arabic calligraphy, while
Ashkenazi and Italian styles evolved in Europe and were somewhat influenced by Latin
scripts. The Byzantine type displays hybrid influences and most likely the influences of
Greek scripts. Figure 2 summarizes the main Hebrew script styles and modes and Figure 3
presents sample patches for each class. Semi-square (semi-cursive) and cursive modes in
each regional style are defined relatively to the style’s square mode. A graphical mode in
one regional style can even look similar to a different mode in another geographical style,
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e.g., square in Italian can be similar to Ashkenazi semi-square. Styles and modes of Hebrew
scripts, paleographically, can not be separated.

Figure 2. Hebrew script styles and modes; not all regional styles have cursive or semi-square mode.

Figure 3. Examples of document image patches with different Hebrew script styles and modes.

Our project aims to recognize the main types of the Hebrew script and their modes
(square, semi-square, cursive). Paleographically, the backbone of our research is the Sfar-
Data (https://sfardata.nli.org.il/ (1 March 2022)), which is a project for the Hebrew paleog-
raphy and codicology started in the 1970s by Malachi Beit-Arié—one of the leading Hebrew
paleographers. Sfardata aimes to locate and classify all existing dated Hebrew manuscripts
written before 1540. Today it includes almost 5000 manuscripts. Malachi Beit-Arié and his
team met with our team, discussed our project, gave us their full support, and allowed
us to use their database in its entirety. Our team’s paleographer, who is herself a student
of Malachi Beit-Arié, handpicked digitized pages from the manuscripts described in the
SfarData as the raw material for our project.

4. Vml-Hp-Ext Dataset Description

The Hebrew paleography dataset is a valuable resource both for creating a large-scale
paleographic examination of Hebrew manuscripts, and assessing and benchmarking script
classification methods. In this paper we present an extended VML-HP-ext (Visual Media
Lab—Hebrew Paleography-Extended) dataset. Compared to the first version presented
in [30], the extended dataset includes sample pages from three times more manuscripts.
Every manuscript was carefully selected by our team’s paleographer. The majority of the
manuscripts used in this dataset are kept in the National Library of Israel, the British Library,
and the Bibliothéque nationale de France. Almost all manuscripts in the Oriental square
script belong to the National library of Russia (we used b/w microfilms from the collection
of the Institute for Microfilmed Hebrew Manuscripts at the National Library of Israel). To
simplify ground truth labeling, we only included pages with one script type and one script

https://sfardata.nli.org.il/
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mode per page. For example, Sephardic square only, and not main text in Sephardic square
and comments in Sephardic cursive. The main challenge when compiling the dataset
was the limited amount of available digitized manuscripts. For some script types (Italian,
Byzantine) the shortage was more pronounced; for others (Ashkenazi, Sephardic) we had
manuscripts in abundance. Keeping the dataset balanced was a challenge in itself.

The enlarged VML-HP-ext collection contains 715 page images excerpted from 171 dif-
ferent manuscripts. We also provide the official split of the VML-HP-ext into training,
typical test, and blind test sets. A typical test set includes unseen pages of the manuscripts
from the training set. While the training and typical test sets are disjoint on the page
level, they do share the same set of manuscripts. Therefore, we also provide the blind test
set, which consist of manuscripts that do not appear in the training set. The blind test
set imitates a real-life scenario, where a scholar would like to obtain a classification for a
previously unseen document. Tables 1 and 2 summarize the extended VML-HP-ext dataset.

Table 1. Summary of the extended VML-HP-ext dataset. Some scripts do not have semi-cursive or
cursive modes. Mss = manuscripts, pp = pages.

Type

Mode

Square Semi-Square Cursive

#Mss #pp #Mss #pp #Mss #pp

Ashkenazi 14 56 12 48 12 48

Byzantine 7 49 12 48 - -

Italian 5 50 11 44 5 50

Oriental 15 45 11 44 - -

Sephardic 15 45 16 48 12 48

Yemenite 24 92 - - - -
Cells with the minus sign (“-”) indicates that the corresponding script type does not exist.

Table 2. The VML-HP-ext dataset—official split. Mss = manuscripts, pp = pages.

Set # Mss # pp

train 130 400
typical test 130 143
blind test 41 172

total 171 715

5. Methodology and Experimental Setting

We view the problem of script type identification as an image classification problem,
where a class is assigned to a given image. The use of deep-learning models is widely
regarded as the best approach to tackle image classification. Therefore, we will use deep-
learning, specifically, the Convolutional Neural Network (CNN) model to classify text
images into script types.

In this section, we describe the experimental setting (model structure, data, and train-
ing scheme) used in our experiments. Having a common setting across all the experiments
makes it more comparable.

5.1. Model

We adopt a CNN model to classify patches extracted from the pages in the dataset.
The models consist of two components, an established CNN backbone (e.g., ResNet, VGG)
which acts as a feature extractor, followed by two fully connected layers. We rely on
established CNN architectures rather than a more complex state-of-the-art models, such
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as transformers [31], or build our own architecture because script type classification is
relatively simple and does not require more complex models to solve it. This point is
backed by the results in the experiments in Section 6.2. The CNN backbone of the models
were initialized from a pretrained model on ImageNet [32].

5.2. Data

The models are trained and tested on patches extracted from pages in the VML-HP-ext
dataset. The patches were extracted using the patch generation method proposed in our
previous work [30], which extracts patches with a uniform text scale and on average 5 lines
in each patch. According to our Hebrew paleography expert, in general such patches
contain the necessary information for classification. The pixel values of the patches were
normalized. The models were trained using 50,000 patches and tested on 13,500 patches.
It is worth noting that the test patches are extracted from the blind test set, i.e., from
manuscripts that do not appear in the training set. This prevents trivial solutions where the
model remembers the background pattern of the pages.

5.3. Training

The training was done in two stages, (1) The CNN backbone of the model is frozen, and
the model is trained for 20 epochs. (2) The CNN backbone is then unfrozen, and the whole
model is trained for additional 20 epochs. We use binary cross entropy as loss function.
During training, random augmentations are applied on the patches. These augmentations
include flip, rotate, zoom, warp, and lighting transforms (see Figure 4).

Original Flip Rotate Zoom Lighting transform

Figure 4. Example of augmented patches.

6. Case Study

As mentioned in Section 4, the VML-HP-ext dataset expanded on its previous version
introduced in [30]. Therefore, in the following section we first revisit experiments made on
the original dataset, mainly to find the optimal input image representation and network
architecture. Then, we conduct experiments to visualize relevant script features, test two
approaches that split the classification of the regional style and graphical mode, and discuss
new ways to classify Hebrew script types.

6.1. Effect of Input Image Representation

Our first experiment is to find the most appropriate input image representation. To
this end, we trained a ResNet50 [14] model to classify patches of different image input
representations extracted from pages in the VML-HP-ext dataset. The model is trained and
tested in the same experiment setting mentioned in Section 5.

We experimented using several types of input such as, raw grayscale, binary, and
smoothed patches (see Figure 5). Smoothing patches by applying Gaussian and bilateral
filters reduces the amount of background information, which may lead the model to overfit,
i.e., it remembers the background pattern.

Table 3 shows the accuracy of the models trained using the different types of input
patches. We can see that the model trained with binary patches achieves the highest
accuracy of 62%, while the model trained using the raw grayscale patches achieves the
lowest accuracy of 52%. This can be attributed to the fact that the model trained on the
grayscale patches is learning to leverage the background pattern during classification. This
point is strengthened by considering the amount of background information present in each
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input type. The raw grayscale patches contain the most background information, followed
by patches with Bilateral and Gaussian filters, and binary patches, which eliminate the
background altogether. This exact order reflects the classification accuracy. Therefore, we
can conclude that the appropriate input type is binary.

Grayscale Gaussian Blur Inverted + Blur Bilateral Binary

Figure 5. Example of the input patch types we experimented with.

Table 3. The accuracy of the model trained using different patch types.

Input Type Accuracy

Grayscale 52%
Gaussian Blur 57%
Inverted + Gaussian Blur 57.5%
Bilateral 54%
Binary 62%

6.2. Effect of Network Architecture

We experimented with different CNN backbone architectures of the classification
model. The models are trained and tested using binarized patches. Similar to the previous
experiment, the models are trained and tested under the setting mentioned in Section 5.

Figure 6 show the accuracy of the models on the test set during training. We can see
that by the end of training, VGG19 has the best performance, reaching an accuracy of 66%.
DenseNet and both ResNet versions reached similar accuracy, about 62%. AlexNet did
not perform as well as the rest, reaching an accuracy of 53%. We can explain this result by
considering the complexity of each model. A simple model may not have the capacity to
learn the classification problem but is less likely to overfit on the training set. In contrast, a
more complex model is able to learn more complex problems, but is more likely to overfit.
We can conclude that VGG19 is complex enough to reach 66% accuracy and is simple
enough to avoid overfitting.

Figure 6. The accuracy of different models during training.
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6.3. Page Level Prediction

We used the trained patch classification models from the previous experiment to make
classification at the page level. The classification is done by sampling a number of patches
from the page, which are classified using the trained models. The page is classified as
the majority class of the sampled patches. We experimented with the number of sampled
patches to find the optimal number.

Figure 7 shows the page level accuracy as a function of the number of sampled patches.
We can see that the page level accuracy on average is higher by about 5% than the patch level
accuracy. Unsurprisingly, VGG19 reaches the highest accuracy of 70.4%. From the figure,
we can conclude that sampling 9 patches per page is enough to achieve the best results. We
can see that adding more patches, beyond 9, does not improve the results further.

Figure 7. Page level accuracy as a function of the number of sampled patches per page.

6.4. Evaluating the Best Performing Model

Tables 4 and 5 show the precision, recall, and F1-score of the VGG model at the
patch and page level, respectively. We can see that the model can classify the Sephardic
script types very good, almost classifying all Sephardic pages perfectly. On the other
hand, the model struggles to classify Italian square and semi-square. As can be seen
in Figures 8 and 9, a large portion of Italian semi-square patches and pages are classified
wrongly as Sephardic square, Byzantine square, and Byzantine semi-square. Almost all Italian
square patches/pages are classified as Italian semi-square. From both confusion matrices, we
can see that apart from Sephardic, confusing between square and semi-square is common
in all other regional styles. This confusion can be attributed to the fact that there is no
clear-cut between square and semi-square modes, as there are script types defined as square
which visually look closer to semi-square (e.g., see the Italian and Oriental square patches
in Figure 10). The reason for this is that when classifying the manuscripts in SfarData, the
researchers did not rely solely on paleographic criteria; they also considered codicological
features such as type and kind of the material (there are different types of both parchment
and paper), drawing techniques, etc. These codicological features of a manuscript are not
available to the model.



J. Imaging 2022, 8, 143 9 of 22

Table 4. Evaluation results of the VGG19 model at patch level.

Label Precision Recall F1-Score

Ashkenazi cursive 0.76 0.55 0.64
Ashkenazi semi-square 0.60 0.88 0.72
Ashkenazi square 0.60 0.88 0.72
Byzantine semi-square 0.40 0.56 0.47
Byzantine square 0.45 0.79 0.57
Italian cursive 0.79 0.95 0.86
Italian semi-square 0.29 0.46 0.36
Italian square 0.14 0.02 0.03
Oriental semi-square 0.48 0.68 0.56
Oriental square 0.98 0.75 0.85
Sephardic cursive 0.99 0.71 0.83
Sephardic semi-square 0.82 0.94 0.87
Sephardic square 1.00 0.83 0.91
Yemenite square 0.98 0.49 0.65

Accuracy 0.66
Macro avg 0.69 0.67 0.65
Weighted avg 0.71 0.66 0.65

Figure 8. Confusion matrix of VGG19 at the patch level. The cells colour correspond to the number
of patches, brighter colours indicates more patches.
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Table 5. Evaluation results of the VGG19 model at page level with nine patches sampled per page.

Label Precision Recall F1-Score

Ashkenazi cursive 0.83 0.56 0.67
Ashkenazi semi-square 0.67 1.00 0.80
Ashkenazi square 1.00 0.83 0.91
Byzantine semi-square 0.64 0.58 0.61
Byzantine square 0.52 0.93 0.67
Italian cursive 0.77 1.00 0.87
Italian semi-square 0.29 0.42 0.34
Italian square 0.00 0.00 0.00
Oriental semi-square 0.56 0.83 0.67
Oriental square 1.00 0.75 0.86
Sephardic cursive 1.00 0.67 0.80
Sephardic semi-square 0.80 1.00 0.89
Sephardic square 1.00 0.89 0.94
Yemenite square 1.00 0.48 0.65

Accuracy 0.70
Macro avg 0.72 0.71 0.69
Weighted avg 0.73 0.70 0.69

Figure 9. Confusion matrix of VGG19 at page level with nine sampled patches per page. The cells
colour correspond to the number of patches, brighter colours indicates more patches.
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Correctly predicted patches

Input

Prediction Ashkenazi
square

Byzantine
square

Italian cur-
sive

Oriental
semi-square

Oriental
square

Incorrectly predicted patches

Input

GT Ashkenazi
cursive

Italian
square

Italian
square

Oriental
semi-square

Oriental
square

Prediction Ashkenazi
semi-square

Byzantine
square

Italian semi-
square

Sephardic
semi-square

Oriental
semi-square

Figure 10. Example of classification results of the VGG19 model.

Table 8. Evaluation results the hierarchical model at page level with 9 patches sampled per page.

Label Precision Recall F1-score

Ashkenazi cursive 1.00 0.89 0.94
Ashkenazi semi-square 0.92 1.00 0.96
Ashkenazi square 1.00 1.00 1.00
Byzantine semi-square 0.58 0.92 0.71
Byzantine square 0.52 0.79 0.63
Italian cursive 0.90 0.90 0.90
Italian semi-square 0.33 0.33 0.33
Italian square 0.50 0.20 0.29
Oriental semi-square 0.50 0.92 0.73
Oriental square 0.75 0.75 0.75
Sephardic cursive 1.00 0.75 0.86
Sephardic semi-square 0.79 0.92 0.85
Sephardic square 1.00 0.78 0.88
Yemenite square 1.00 0.48 0.65

Accuracy 0.75
Macro avg 0.78 0.76 0.75
Weighted avg 0.78 0.75 0.74

patches, and the same setting mentioned in Section 5), the only difference is that the patches 354

are labeled with their squareness values. 355

To evaluate the model numerically, we calculated the Root Mean Square Error (RMSE) 356

on the test set. RMSE is calculated according to Eq. ??, where y(i) is the predicted label for 357

patch i, and ŷ(i) is its actual label. The model achieved RMSE of about 0.32, meaning the 358

prediction of the model is on average 0.32 away from the true label. We can see the quality 359

of the predictions in Figure 18. 360

RMSE =

√
∑N

i=0 ||y(i)− ŷ(i)||2
N

Figure 10. Example of classification results of the VGG19 model.

6.5. Features Visualization

To visualize the features that guide the model toward its finial prediction, we use
the Gradient-weighted Class Activation Mapping (Grad-CAM) technique [33]. Grad-Cam
uses the gradients of a target class flowing into the final convolutional layers of the CNN,
which in our case is VGG19, to produce a coarse localization map that highlights important
regions for predicting the target class.

Figure 11 illustrates the important features of a sample patch for each one of the script
types. We can see that in some cases the network ”looks” at specific letters in the patch, e.g.,
letters ‘lamed’ in Byzantine semi-square, ‘hey’ in Byzantine square, ‘bet’, ‘resh’ in Oriental
semi-square, and ‘aleph’ in Oriental square. While in other cases, the network looks at
the global layout of the patch, such as in all Ashkenazi types, Italian square, and to some
degree Sephardic semi-square.

6.6. Splitting Regional Styles and Graphical Modes Classification

In the previous experiments, we saw that one of the main classification errors was
due to the confusion between the different graphical modes within each regional styles.
This is very prominent for Italian square, where almost all the Italian square patches are
classified as Italian semi-square. In an attempt to solve this confusion, we experimented
with classifying the regional styles and graphical modes separately. We trained two VGG19
models to classify the regional styles and graphical modes, respectively. The two models
were trained using the same training scheme as the previous experiments (i.e., using
binarized patches, and the same setting mentioned in Section 5).

Figures 12 and 13 shows the confusion matrices of the trained models. We can see
that the model trained to classify the regional styles does a good job, reaching an accuracy
of 81% at patch level and 85% at page level. The model trained to classify the graphical
modes reached an accuracy of 77% at patch level and 80% at page level. However, we can
see that there is still significant confusion between the graphical modes, suggesting that
this confusion is not a limitation of the model, but rather a problem with the distinction
between the graphical modes, specifically, the distinction between square and semi-square
in certain regional styles (as mentioned before, see the Italian and Oriental square patches
in Figure 10).
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Ashkenazi cursive Ashkenazi semi-square Ashkenazi square Byzantine semi-square

Byzantine square Italian cursive Italian semi-square Italian square

Oriental semi-square Oriental square Sephardic cursive Sephardic semi-square

Sephardic semi-square Yemenite square

Figure 11. Visualization of important features for classification using Grad-CAM.

To evaluate the two models against the models trained using the original labels
(regional and graphical combined), we combined the classification from the two models to
get a classification result similar to the original labels. For example, suppose a patch got the
prediction of Italian from the regional model and square from the graphical model, then the
combined label will be Italian square. We found that in rare cases, this approach introduces
labels that are not present in the dataset, e.g., Byzantine cursive, Oriental cursive, and
Yemenite semi-square. This classification scheme achieved 64% accuracy at patch level and
69% accuracy at page level, indicating that classifying the regional styles and graphical
modes separately only worsened the results rather than improving it.
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Figure 12. Confusion matrix of VGG19 model trained for regional style classification. The cells colour
correspond to the number of patches, brighter colours indicates more patches.

Figure 13. Confusion matrix of the VGG19 model for graphical mode classification. The cells colour
correspond to the number of patches, brighter colours indicates more patches.
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6.7. Hierarchical Classification

In the following experiment, we explore a hierarchical approach for classification.
In this approach, patches are classified in a hierarchical manner, as the regional style is
predicted at the first level, then the graphical mode is predicted by a dedicated model for
each regional style. For example, if a patch was classified as Ashkenazi, then it is passed to
a model trained to classify graphical modes on Ashkenazi patches (see Figure 14).

Figure 14. Illustration of the hierarchical classification approach. For a given patch, the regional
style is first classified, then based on this classification the patch is based to the relevant model in the
second layer to classify the graphical mode.

All the models in the hierarchy have VGG19 architecture, similar to the previous
experiment. The models are trained using the relevant subset from the patches mentioned
in Section 5, e.g., the Ashkenazi classification model at the second level was trained using
patches with the Ashkenazi regional style and labeled with their graphical modes. The
models are trained under the setting mentioned in Section 5.

Table 6 shows the patch level accuracy of the models across the hierarchy, the model
predicting the regional styles and the models predicting the graphical modes for the regional
styles (there is no need for a Yemenite model because it only has one graphical mode). We
can see that while all the models achieve accuracy higher than 80%, the classification model
for Italian script got 66% accuracy, with the major source of error from classifying square as
semi-square.

Table 6. The patch level accuracy of the models in the hierarchy.

Model Accuracy

Regional 81%

Graphical modes

Ashkenazi 93%
Byzantine 79%
Italian 66%
Oriental 88%
Sephardic 91%

Table 7 shows the evaluation results of the hierarchical model at patch level. There
is noticeable improvement over the previous experiments on almost every metric. The
model achieves an accuracy of 68%, two percentage points over the accuracy of the best
performing model in the previous experiments. A significant source of this improvement
came from increasing the classification accuracy of the Italian square. However, it is still a
challenge, as can be seen in Figure 15 compared to Figure 8.
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Table 7. Evaluation results of the hierarchical model at patch level.

Label Precision Recall F1-Score

Ashkenazi cursive 0.89 0.79 0.84
Ashkenazi semi-square 0.82 1.00 0.90
Ashkenazi square 0.94 0.91 0.93
Byzantine semi-square 0.43 0.95 0.59
Byzantine square 0.43 0.95 0.59
Italian cursive 0.89 0.78 0.83
Italian semi-square 0.35 0.33 0.34
Italian square 0.47 0.23 0.31
Oriental semi-square 0.50 0.68 0.58
Oriental square 0.78 0.75 0.76
Sephardic cursive 0.99 0.70 0.82
Sephardic semi-square 0.71 0.88 0.79
Sephardic square 0.99 0.72 0.84
Yemenite square 1.00 0.46 0.63

Accuracy 0.68
Macro avg 0.73 0.70 0.69
Weighted avg 0.74 0.68 0.68

Figure 15. Confusion matrix of the Hierarchical model at patch level. The cells colour correspond to
the number of patches, brighter colours indicates more patches.

Table 8 reports the evaluation results of the hierarchical model at page level. The
hierarchical model achieves the best evaluation results on page level as well, getting an
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accuracy of 75%. From Figure 16 we can see that the hierarchical model reduces the
confusion between the graphical modes, more notably in Byzantine and Italian scripts.

Table 8. Evaluation results of the hierarchical model at page level with 9 patches sampled per page.

Label Precision Recall F1-Score

Ashkenazi cursive 1.00 0.89 0.94
Ashkenazi semi-square 0.92 1.00 0.96
Ashkenazi square 1.00 1.00 1.00
Byzantine semi-square 0.58 0.92 0.71
Byzantine square 0.52 0.79 0.63
Italian cursive 0.90 0.90 0.90
Italian semi-square 0.33 0.33 0.33
Italian square 0.50 0.20 0.29
Oriental semi-square 0.50 0.92 0.73
Oriental square 0.75 0.75 0.75
Sephardic cursive 1.00 0.75 0.86
Sephardic semi-square 0.79 0.92 0.85
Sephardic square 1.00 0.78 0.88
Yemenite square 1.00 0.48 0.65

Accuracy 0.75
Macro avg 0.78 0.76 0.75
Weighted avg 0.78 0.75 0.74

Figure 16. Confusion matrix of the hierarchical model at page level with nine patches sampled per
page. The cells colour correspond to the number of patches, brighter colours indicates more patches.
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6.8. Soft-Labeling: Reconsidering Graphical Mode Classes

We saw from the previous experiments that the distinction between the graphical
modes (i.e., square, semi-square, and cursive) is not always well-defined. We hypothesize
that the graphical mode of the script is not a discrete class, but rather a spectrum where
“Squareness” and “Cursiveness” are at the two ends, and the manuscripts carry features
from multiple scripts. Therefore, we added a soft-labeling scheme to the dataset, where each
manuscript is labeled using a vector of size eight. The first six elements of the vector express
the degree of similarity of the manuscript to belong to a certain regional type (Ashkenazi,
Italian, Sephardic, Oriental, Byzantine, and Yemenite) and the last two elements are the
degrees of similarity to a certain graphical mode, square, and cursive (similar values for
both square and cursive indicate the semi-square mode). Here, we focus only on the
soft-labeling of the graphical modes.

In this experiment, we converted the soft-labeling of the graphical modes into a value
on the spectrum [−1, 1], where a value of −1 indicates that the script is cursive, and 1
indicates that it is square (as illustrated in Figure 17). We refer to this value as squareness
value. Using the obtained squareness values, we trained a regression model with VGG19
backbone. The model was trained and tested similar to the previous experiments (i.e., using
binary patches, and the same setting mentioned in Section 5), the only difference is that the
patches are labeled with their squareness values.

Figure 17. Sample patches with their respective graphical mode soft-labels. Above each patch the
original script type label appears, and below it the graphical mode spectrum with soft-label indicated
in red appears.

To evaluate the model numerically, we calculated the Root Mean Square Error (RMSE)
on the test set. RMSE is calculated according to Equation (1), where y(i) is the predicted
label for patch i, and ŷ(i) is its actual label. The model achieved RMSE of about 0.32,
meaning that the prediction of the model is on average 0.32 away from the true label. We
can see the quality of the predictions in Figure 18.

RMSE =

√
∑N

i=0 ||y(i)− ŷ(i)||2
N

(1)

The squareness value allows us to redefine the graphical in a more precise manner.
To test this, we redefined the graphical mode of each script type, based on its squareness
value, as follows:
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Graphical(s) =





semi-square, Squareness(s) ∈ [−t, t]
square, Squareness(s) > t
cursive, Squareness(s) < −t

In words, given a value t (semi-square region length) between zero and one, a script
type with squareness value between [−t, t] is defined as semi-square, squareness value
grater than t is defined as square, and less than −t is defined as cursive (as illustrated in
Figure 19).

Figure 18. Sample prediction of the graphical mode soft-labeling using the regression model. Above
each patch its original label appears. Below each patch appears the prediction of the model indicated
in green, and the ground-true (GT) soft-label indicated in red. In cases where the red line does not
appear, it means that the two line are on top of each other.

Redefining the graphical modes using the squareness value affects the evaluation
of our trained models. We combine the predictions of the trained regression model and
the regional style model from the previous experiment, to obtain both regional style and
graphical mode. The obtained results were evaluated on the test set with the redefined
graphical modes using different values of t (semi-square region length). Figure 20 shows
the accuracy of the results obtained using the regression model and the regional classifier
from the previous experiment. We can see that redefining the graphical modes drastically
increases the accuracy compared with the models in our previous experiments; going from
66% accuracy of the best performing VGG19 model to greater than 82% accuracy. The
accuracy of the results ranges from 82% for t = 0.05 to around 87% for t > 0.4.
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t = 0.2 t = 0.3 t = 0.5

Figure 19. Illustration of how semi-square can be redefined using different values of t. The purple
region in the middle indicates the squareness value range that may be considered semi-square. A text
with squareness value in the purple region will be considered semi-square, squareness value to the
right of this region is considered square, and to the left is considered cursive.

Figure 20. Accuracy of the combined results of the trained regression model and regional style
classifier. The accuracy is measured with different values of t.

6.9. Comparing Deep Neural Network Performance against a Paleographer Expert

In the previous sections, we reported performances of deep learning model in several
settings. However, to evaluate the effectiveness of the model, we need to compare its
accuracy versus the accuracy of an expert. For this, we compiled an online questionnaire
(https://forms.gle/5QgGQ6x53tt7tkmn6 (1 March 2022)), and asked a paleographer to
classify 75 document patches according to the classes of script types and modes. The
document patches were randomly chosen from the set of patches used in our experiments,
approximately five from each class. The paleographer who participated in this experiment
is the coordinator of the manuscripts’ reading room at the National Library of Israel—one
of today’s leading and most experienced Hebrew paleographers. The accuracy rate of
the paleographer expert is 70%. We can draw two conclusions from this experiment.
First, the problem was challenging for the human expert due to the unusual format:
paleographers work with manuscripts and pages, not patches. Second, the automatic
classification achieves human-level performance. A potential limitation of this experiment
is the number of participants, which was one paleographer. Unfortunately, the number of
Hebrew paleographers is extremely small, and exempt the paleographers who created the
SfarData. However, we do not expect a larger experiment to change the results significantly.

https://forms.gle/5QgGQ6x53tt7tkmn6


J. Imaging 2022, 8, 143 20 of 22

7. Conclusions

In this paper, we explored automatic scripts styles and modes classification using
deep-learning techniques. For this, we compiled the VML-HP-ext dataset to train and test
our approaches. The VML-HP-ext dataset contains carefully curated pages extracted from
manuscripts of SfarData collection. The experiments were conducted by analyzing and
classifying patches extracted from the manuscripts pages. We used a CNN-based deep
learning models to classify and analyze the patches.

We conducted experiments to find the appropriate input image representation and
network architecture for script type classification. Binary patches provide the best results,
because binarization eliminates background information, which reduces the likelihood that
the model overfits on the training data.

According to our experiments, the VGG19 outperforms other CNN networks, achiev-
ing an accuracy of 66% at patch level. In addition, we tested the classifying pages, where
a number of patches are sampled at random from a page and the page is classified as
the majority class of the sampled patches. We found out that the page accuracy is higher
by about 5% than the patch level accuracy, where VGG19 reached an accuracy of 70%
at a page level with 9 patches sampled per page. Furthermore, we experimented with
classifying the regional styles (Ashkenazi, Byzantine, Italian, etc.) and graphical modes
(square, semi-square, and cursive) separately. First, we used two independent models—one
that classifies the regional styles and another that classifies the graphical modes. Then, we
tried a hierarchical classification approach, which includes two levels. The first level consist
of a model that classifies the regional styles, and the second level contains six models that
classify the graphical modes. The hierarchical approach achieved the highest accuracy of
68% at patch level and 75% at page level.

We also explored using soft-labels to define a value we call squareness value, which
indicates the squareness/cursiveness of the script. Using the squareness value, we showed
how the graphical mode labels can be redefined, and this redefinition increases the clas-
sification accuracy from 68% to 82–87%. Finally, we compared the automatic classifica-
tion versus human expert, and showed that automatic classification is on-par to human-
level performance.
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